

Learn How to Think
with Karel the Robot

Dr. Pavel Solin

September 24, 2018

© 2011-2018 NCLab, Inc. All Rights Reserved.

Preface

Computer programming is fun. Telling a machine what to do, and then watching it actu-
ally do it, is amazing. Programming is all about breaking complex problems into simpler
ones which are easier to solve. Interacting with the computer will teach you how to be ac-
curate, use logic, solve problems, persevere, overcome failure, and get things done. These
are tremendously important life skills which will help you succeed in anything you will
do in the future.

Now, you might ask: "Why should I lose time with Karel the Robot - an educational pro-
gramming language - when I can start right away learning a real programming language such as
Python, C++ or Java?" The answer is that computer programming is like driving a car: One
thing is to learn how to operate the vehicle - start it, shift gears, push the gas pedal and
brakes, etc. But another, even more important thing is to learn the traffic rules really well:
What should you do when you are coming to an intersection? Who has the right of way?
What are the meanings of the traffic lights and symbols? In short - how to become a good
driver. In the context of computer programming, Karel will teach you how to be such
a good driver. And after that, it will be incredibly easy for you to learn how to operate
various other "cars" which are other languages such as Python, Java or C++.

By the way, Karel is not a toy language at all. It can solve very hard problems includ-
ing classical world-class programming challenges such as the Eight Queens puzzle which
you can find on Wikipedia. Karel also can parse binary trees using recursion, implement
sorting algorithms, perform statistical experiments, or read Braille text:

Karel reading his own name in Braille.

i

PREFACE

About Karel the Robot

The educational programming language Karel the Robot was created at the Stanford Uni-
versity by Dr. R.E. Pattis who also wrote the original textbook Karel the Robot: A Gentle
Introduction to the Art of Programming in the 1980s. At that time, its syntax was influenced
by Pascal, a major programming language of that era. We have updated the language to
be compatible with Python, while preserving Dr. R.E. Pattis’ original ideas. Python is a
major programming language of modern engineering and science.

About the Author

Dr. Pavel Solin is Professor of Computational Science at the University of Nevada, Reno.
He has used the first 8-bit computers to draw ornaments on the screen of small black and
white TV when he was 9. There were no computer monitors yet, and games were stored
on audio casettes. Much changed since then but Dr. Solin’s passion for computers and
programming remained the same. Today he is using the most powerful supercomput-
ers to understand what happens inside of collapsing stars and other natural processes
that cannot be observed or measured. He is fluent in several computer languages, wrote
hundreds of thousands of lines of code, leads open source software projects, and enjoys
learning new things every day.

Acknowledgment

We would like to thank educators and students for reporting bugs, suggesting new fea-
tures, and providing valuable feedback. This is helping us to continuously improve the
self-paced interactive Karel course in NCLab, as well as this textbook and the NCLab
computing platform itself.

ii

Contents

Preface . i
About Karel the Robot . ii
About the Author . ii
Acknowledgment . ii

1. Introduction . 1
1.1. Karel Čapek and his 1921 play R.U.R. 1
1.2. Brief history of the Karel language . 2
1.3. Various past implementations . 2
1.4. New Karel language based on Python . 3
1.5. Command right and some other new features . 4
1.6. What can Karel do? . 4
1.7. How does Karel differ from Python? . 5
1.8. Review questions . 5

2. Basic Commands . 8
2.1. Manual mode . 8
2.2. Steps and operations . 10
2.3. Using keyboard controls . 10
2.4. Seeing the world through the robot’s eyes . 10
2.5. Programming mode . 11
2.6. Algorithm vs. program . 12
2.7. Usually, a task has more than one solution . 13
2.8. How to recognize the best solution . 14
2.9. Logical errors . 15
2.10. Syntax rules and syntax errors . 16
2.11. Debugging and where did the word "bug" come from . 18
2.12. Karel’s bag . 19
2.13. FILO (stack) and FIFO (queue) . 20
2.14. Karel is case-sensitive . 21

iii

CONTENTS

2.15. Review questions . 21

3. Counting Loop . 25
3.1. Counting loop and the keyword repeat . 25
3.2. Commenting your code . 27
3.3. Repeating a sequence of commands . 28
3.4. Indentation matters . 29
3.5. How to figure out repeating patterns quickly and correctly 30
3.6. Stashing coins . 32
3.7. Cooking potatoes . 35
3.8. When it is not be possible to start a loop right away . 36
3.9. Additional commands might be needed after a loop finishes 38
3.10. Nested loops . 39
3.11. Revisiting previous programs . 42
3.12. Crab cake . 43
3.13. Starfish square . 44
3.14. Triple-nested loops . 47
3.15. Pearl necklace . 48
3.16. Even more levels of nesting . 49
3.17. Review questions . 50

4. Conditions . 53
4.1. What are conditions? . 53
4.2. Why does Karel need them? . 53
4.3. Karel’s wall sensor and the if statement . 54
4.4. What happens if there is no wall? . 55
4.5. Other types of obstacles . 56
4.6. Combining loops and conditions . 57
4.7. Collectible objects . 58
4.8. Collecting bananas . 59
4.9. Containers . 60
4.10. Collecting coconuts . 61
4.11. The else branch . 61
4.12. Hurdle race . 63
4.13. Function print . 63
4.14. Sensor north . 64
4.15. Command pass . 65

iv

4.16. Finding North . 65
4.17. Keyword not . 66
4.18. Sensor empty . 67
4.19. Keyword and . 69
4.20. Bounty . 69
4.21. Keyword or . 70
4.22. Danger . 72
4.23. Sensor home . 73
4.24. The full if-elif-else statement . 73
4.25. More is coming! . 75
4.26. Review questions . 75

5. Conditional Loop . 79
5.1. Conditional loop and the keyword while . 79
5.2. The difference between the conditional and counting loops 79
5.3. Step by step . 80
5.4. Climbing a pyramid . 81
5.5. Narrow escape . 84
5.6. Combining the repeat and while loops . 85
5.7. First Maze Algorithm (FMA) . 87
5.8. Three possible failures of the FMA . 89
5.9. Right-handed version of the FMA . 91
5.10. Other types of mazes the FMA can handle . 92
5.11. Improving Program 4.9 "Finding North" . 92
5.12. Improving Program 4.12 "Emptying bag" . 93
5.13. Improving Program 4.17 "Danger" . 93
5.14. Improving Program 4.18 "Tunnel" . 94
5.15. Other types of loops: do-while, until, and for . 94
5.16. More is coming! . 94
5.17. Review questions . 95

6. Custom Commands . 97
6.1. Why are custom commands useful? . 97
6.2. Defining a custom command star .101
6.3. Assembling the solution of the main task .102
6.4. Collecting water bottles .106
6.5. The optional return statement .109

v

CONTENTS

6.6. Arcade game . 110
6.7. Second Maze Algorithm (SMA) .113
6.8. Right-handed version of the SMA .117
6.9. Rock climbing . 118
6.10. Program length vs. efficiency .119
6.11. Writing monolithic code vs. using custom commands .121
6.12. Defining commands inside other commands .123
6.13. Create your own Karel language! .124
6.14. Review questions .126

7. Variables .128
7.1. What are variables and why are they useful? .128
7.2. Types of variables .129
7.3. Choosing the names of variables .129
7.4. Creating and initializing numerical variables .130
7.5. Assignment operator = .130
7.6. Displaying the values of variables .130
7.7. Basic math operations with variables .131
7.8. Keywords inc and dec .132
7.9. Arithmetic operators +=, -=, *= and /= .132
7.10. Comparison operators ==, !=, <, <=, > and >= . 133
7.11. Counting maps .135
7.12. Water supply .136
7.13. Karel and the Fibonacci sequence .137
7.14. Review questions .138

8. Functions . 141
8.1. Defining and using functions . 141
8.2. Builder . 142
8.3. Storekeeper .144
8.4. Local variables and local scope .146
8.5. Global variables and global scope .147
8.6. Functions that accept arguments .149
8.7. Can a function change the values of its arguments? .150
8.8. Review questions .152

9. Text Strings . 153

vi

9.1. Raw text strings and text string variables .153
9.2. Assigning, displaying, and comparing text strings .154
9.3. Concatenating text strings . 155
9.4. Multiplying text strings with integers .155
9.5. Length of a text string .156
9.6. Parsing a text string with the for loop .156
9.7. Reversing text strings .156
9.8. Extracting individual characters by their indices .157
9.9. Using negative indices .158
9.10. Slicing text strings .159
9.11. Displaying quotes in text strings .160
9.12. Checking for substrings .161
9.13. Counting occurrences of substrings .162
9.14. Finding the positions of substrings .163
9.15. Searching and replacing in text strings .164
9.16. Removing substrings .165
9.17. Swapping substrings . 166
9.18. Executing text strings as code .167
9.19. Your homework . 169
9.20. Review questions .169

10. Testing Your Programs .172
10.1. Morse code project - Part I .172
10.2. Testing the function row .174
10.3. Morse code project - Part II . 176
10.4. Testing the function english(symbol) .178
10.5. Morse code project - Part III .180
10.6. Your homework . 181
10.7. Review questions .181

11. Boolean Values, Variables, Expressions, and Functions . 182
11.1. George Boole .182
11.2. Quick introduction to logic . 183
11.3. What is Boolean algebra? .184
11.4. Boolean values and variables in Karel .185
11.5. GPS sensors gpsx and gpsy .187
11.6. Comparison operators ==, !=, <, >, <= and >= . 190

vii

CONTENTS

11.7. Boolean functions .190
11.8. Karel’s sensors are Boolean functions . 192
11.9. The if statement revisited .193
11.10. Using the if statement to display debugging information194
11.11. Another look at the while loop . 195
11.12. Infinite loop while True .196
11.13. Review questions .198

12. Randomness and Probability . 200
12.1. Why is randomness useful in computing .200
12.2. Generating random integers .201
12.3. Karel is rolling a die . 202
12.4. Placing objects at random locations .203
12.5. Building a random skyline .205
12.6. Calculating the maximum . 206
12.7. Measuring the height of a skyline .207
12.8. Measuring the height of a building .209
12.9. Calculating the minimum .211
12.10. Measuring the clearance of a cave .212
12.11. Generating random Booleans .213
12.12. Karel is tossing a coin .214
12.13. Calculating probabilities .214
12.14. Probability of events vs. their frequency . 216
12.15. Karel and random walks .218
12.16. Using randomness to solve difficult tasks .219
12.17. Review questions .220

13. Lists .223
13.1. What are lists and why they are useful .223
13.2. Creating empty and nonempty lists .224
13.3. Appending items to a list .225
13.4. Measuring the length of a list .226
13.5. Accessing list items via their indices . 226
13.6. Creating a list of lists . 227
13.7. Parsing lists with the for loop .228
13.8. Checking if an item is in a list .229
13.9. Removing and returning ("popping") items from a list .231

viii

13.10. Adding lists .232
13.11. Multiplying lists with integers .232
13.12. Deleting items from a list .233
13.13. Gardener .234
13.14. Expedition Antarctica . 235
13.15. Copycat .238
13.16. Review questions .241

14. Recursion .243
14.1. What is recursion and why is it useful .243
14.2. Which tasks are suitable for recursion? .245
14.3. Collecting shields .247
14.4. Under the hood .248
14.5. Forgetting the stopping condition .249
14.6. Moving shields to boxes .251
14.7. Museum heist . 251
14.8. Mutually recursive commands .252
14.9. Using variables and functions in recursion .253
14.10. Parsing lists using recursion .255
14.11. Recursion at its best . 256
14.12. Review questions .257

15. Advanced Applications .258
15.1. Flood (recursion) . 258
15.2. Contraband (recursion) .260
15.3. Traversing binary trees (recursion) .262
15.4. Bubble sort .263
15.5. Reading Braille .266
15.6. Cardan grille . 270
15.7. Land surveyor .274
15.8. The Eight Queens puzzle . 276

A. Karel App in NCLab .281
A.1. Launching the Karel app .281
A.2. Building mazes . 282
A.3. Create your own game! . 284
A.4. Check how difficult your game is .287

ix

CONTENTS

A.5. Convert worksheet into a game .288
A.6. Define game goals .290
A.7. Final test .291
A.8. Publish your game in the Internet! .292

B. Self-Paced Karel Course in NCLab .294
B.1. Age groups and prerequisites .294
B.2. Brief overview .294
B.3. What does it take to be an instructor .295
B.4. Role of the instructor . 295
B.5. Instructor training .295
B.6. Course structure .295
B.7. Syllabus, lesson plans, pacing guide . 295
B.8. Student journals, cheat sheets, solution manuals . 296
B.9. Creative projects .296
B.10. Explore NCLab .297
B.11. Contact us .297

Index .298

x

1. Introduction

In this chapter you will learn:
• About a Czech writer Karel Čapek who predicted human-like machines and in-

vented the word "robot".
• About a Stanford University professor R.E. Pattis who created an educational pro-

gramming language to help his students learn logic.
• Basic facts about the Karel language, and how it differs from other programming

languages.

1.1. Karel Čapek and his 1921 play R.U.R.

Karel Čapek (1890 - 1938) was a legendary Czech science fiction writer who first predicted
human-like machines and invented the word "robot" in his 1921 science fiction play R.U.R.
(Rossum’s Universal Robots). The play was soon translated to more than 20 languages. In
his visionary novels, Karel Čapek also predicted nuclear weapons, the Second World War,
and consumer society. He was nominated for the Nobel Prize in Literature seven times.

Karel Čapek and his 1921 play R.U.R.

1

1. INTRODUCTION

1.2. Brief history of the Karel language

The educational programming language Karel the Robot was introduced by Dr. Richard
E. Pattis at the Stanford University in his book Karel The Robot: A Gentle Introduction to the
Art of Programming in 1981.

Dr. Richard E. Pattis in the 1980s and today.

R.E. Pattis created the language to help his students learn programming logic. Nowa-
days, Karel is used at countless schools in the world. In 2006, R.E. Pattis was recognized
by the Association for Computing Machinery (ACM) as a Pioneering Innovator Who Sig-
nificantly Advanced the Digital Age.

1.3. Various past implementations

There have been a number of different implementations of the Karel language since the
1980s. Some of them can still be downloaded from the web and used today while some
others were designed for older operating systems (such as Windows 3.1) which no longer
are in use:

Various past Karel implementations.

2

1.4. NEW KAREL LANGUAGE BASED ON PYTHON

1.4. New Karel language based on Python

The original Karel language was based on Pascal, a popular programming language of the
1980s. For illustration, here is a sample program written using the original Karel language:

PROGRAM 1.1. Sample program written using the original Karel language

1 BEGINNING-OF-PROGRAM

2

3 DEFINE turnright AS

4 BEGIN

5 turnleft

6 turnleft

7 turnleft

8 END

9

10 BEGINNING-OF-EXECUTION

11 ITERATE 3 TIMES

12 BEGIN

13 turnright

14 move

15 END

16 turnoff

17 END-OF-EXECUTION

18

19 END-OF-PROGRAM

Since Pascal is not a mainstream programming language today, we revised the Karel lan-
guage and adjusted its syntax to be similar to Python, a major programming language
of modern engineering and science. This change made Karel much easier to use. For
illustration, here is the above program again, written in the new Karel language:

PROGRAM 1.2. Program 1.1 rewritten using the new Karel language

1 def turnright

2 repeat 3

3 left

4

5 repeat 3

6 turnright

7 go

3

1. INTRODUCTION

1.5. Command right and some other new features

The new Karel language has a built-in command right for the right turn and the cor-
responding animation. In the original Karel language, the robot had to make three left
turns to turn right. As a result, when solving more complex tasks, the robot was spinning
a lot. In fact, he resembled a tornado passing through the maze. With this command,
Program 1.2 can be reduced to just three lines:

PROGRAM 1.3. Simplified version of Program 1.2

1 repeat 3

2 right

3 go

For convenience, long keywords were replaced with shorter ones, such as leftturnwith
left, move with go, pickbeeper with get, putbeeper with put. Complicated syntax
features such as semicolons and parentheses were removed for easier use.

And finally, the original Karel only had beepers and walls in the maze. We added
many other collectible objects such as gems, nuggets, spiders and snakes. We also added
many other types of obstacles (which Karel must not run into or he explodes) such as
water, fire, skulls, scorpions and acid. The new Karel world also has containers (where
he can drop off collectible objects) such as marks, boxes, baskets, chests and fishing nets.
More about creating mazes and making games will be explained in Appendix A.

1.6. What can Karel do?

Karel is a determined robot that can cross a jungle or a desert, explore caves, collect pearls
on the ocean’s floor, climb icy mountains and do many other cool things:

Karel the Robot.

4

1.8. REVIEW QUESTIONS

He can detect collectible objects beneath him and obstacles in front of him. He can detect
if he is facing North and if he is at his home square. He can also collect objects and/or
remember their GPS coordinates, store them in variables and lists, and place objects on
the floor or in containers as needed.

1.7. How does Karel differ from Python?

Despite its playful appearance, Karel features all key concepts of modern procedural pro-
gramming. Technically speaking, it is a complete Turing machine. As you will see later,
the Karel programs presented in this textbook range from very simple to extremely chal-
lenging.

As we already mentioned, the new version of the Karel language is influenced by
Python. Basic Python concepts such as numbers, text strings, logical values, and lists are
implemented in Karel. Also, Karel knows basic Python statements. However, not every
code written in Karel will work in Python and vice versa. Karel does not use the colon
symbol : after compound statements if, while, def, etc. Karel has the loop repeat

which is a simplified version of the Python for loop. Also, Karel has a set of its own
commands and functions such as go, left, right which are not available in Python.

1.8. Review questions

Note: For all review questions in this book: None, one, or multiple answers may be cor-
rect.

QUESTION 1.1. Karel Čapek was a famous Czech
A musician
B football player
C hockey player
D writer

QUESTION 1.2. The word "robot" was first introduced in
A 1921
B 1291
C 1991
D 1221

QUESTION 1.3. The word "robot" was first introduced in
A the song Robotic Mind.

5

1. INTRODUCTION

B the book Uprising of Robots.
C the theater play R.U.R.
D the movie E.T.

QUESTION 1.4. Who created the educational programming language Karel the Robot?
A Karel Čapek
B Pavel Solin
C Richard E. Pattis
D John von Neumann

QUESTION 1.5. Name the university where Karel the Robot was first used!
A MIT
B Princeton
C Harvard
D Stanford

QUESTION 1.6. When was Karel the Robot created?
A 1981
B 1991
C 2001
D 1967

QUESTION 1.7. Why was Karel the Robot created?
A To help students learn logic.
B To help students learn keyboarding.
C To help students learn geometry.
D To help students learn robotics.

QUESTION 1.8. What major programming language influenced the original Karel language?
A Cobol
B Basic
C Fortran
D Pascal

QUESTION 1.9. How many times was Karel implemented in the past?
A One time.
B Two times.
C At least three times.
D Karelw as never implemented in the past.

6

1.8. REVIEW QUESTIONS

QUESTION 1.10. The new Karel language used in this textbook is based on
A C++
B Lua
C Python
D Ruby

QUESTION 1.11. What command was newly introduced in the new Karel language?
A left
B right
C jump
D turn

QUESTION 1.12. Which of the following statements are true?
A The colon : is not used in the Karel language.
B Python contains all commands which are in Karel.
C Karel contains all commands which are in Python.
D Karel can use GPS coordinates.

QUESTION 1.13. What types of objects can be found in Karel’s maze in NCLab?
A Walls only.
B Beepers only.
C Collectible objects, obstacles, and containers.
D Walls and beepers.

QUESTION 1.14. What can Karel do?
A Collect objects which are beneath him.
B Detect obstacles which are in front of him.
C Detect if he is facing North.
D Place objects on the floor and/or in containers.

QUESTION 1.15. What is the main benefit of learning programming with Karel the Robot?
A Karel is simplified C++.
B Karel is a modern version of Cobol.
C Karel is only for those who don’t want to learn any other programming language.
D With Karel, one can learn programming methodology easily without struggling with the

technical complexity of "real" programming languages.

7

2. Basic Commands

In this chapter you will learn:
• How to control Karel in Manual mode using buttons and the keyboard.
• To see the world through the robot’s eyes.
• The difference between steps and operations.
• The difference between an algorithm and a program.
• How to write first Karel programs using basic commands.
• That most tasks have multiple solutions, and how to recognize the best one.
• The difference between logical and syntax errors, and what is debugging.
• About Karel’s bag, and the meaning of FILO and FIFO.

2.1. Manual mode

Let’s switch the Karel app in NCLab to Manual mode. Here, Karel can be guided by
pressing buttons or certain keys on the keyboard. The keywords displayed on the buttons
represent the five basic commands of the Karel language - go, left, right, get and put:

Karel application in Manual mode.
8

2.1. MANUAL MODE

Before we go further, recall the four major directions on the compass - North, South, East
and West:

Four major directions on the compass.

The buttons change dynamically according to the direction which the robot is facing:

Karel faces North. Karel faces East.

Karel faces West. Karel faces South.

9

2. BASIC COMMANDS

2.2. Steps and operations

On the bottom of the left panel you can see two icons that represent a computer () and
a trace (). These are the counters of operations and steps, respectively. An operation
is anything the robot does - making one step forward, turning left or right, collecting an
object, or placing an object on the ground. The number of operations is always greater
than or equal to the number of steps. For example, when Karel makes a full 360-degree
turn by executing four times the command right, he will do four operations but make
zero steps.

2.3. Using keyboard controls

In Manual mode, the robot can also be guided using the keyboard. The corresponding
keys are highlighted in the image below:

Karel’s keyboard controls.

The up arrow corresponds to go, left arrow to left, right arrow to right. The Shift key
corresponds to get and the Control (CTRL/CMD) key to put.

2.4. Seeing the world through the robot’s eyes

In order to guide the robot correctly, one needs to see the world through the robot’s eyes.
For example, when the robot faces North, then after turning right he will face East:

When Karel faces North, his right is your right.

10

2.5. PROGRAMMING MODE

But when Karel faces South, then after turning right he will face West:

When Karel faces South, his right is your left.

This is the same skill that you need to correctly read maps.

Working with Karel will improve your ability to read maps.

2.5. Programming mode

Now, let’s switch the Karel app to the Programming mode:

Karel application in Programming mode.

Here, the robot can be guided by typing commands. The code cell is located in the left
panel. The control buttons are explained in the following table:

11

2. BASIC COMMANDS

Control buttons in the Programming mode

Run the program Step through the program

Stop the program Erase the code

Restore the maze Close the Karel app

2.6. Algorithm vs. program

Karel will always follow your commands exactly to the letter - no exceptions. If the robot
does something wrong, such as crashing into a wall, then most likely it was not his mistake
but yours. Your algorithm was wrong.

An algorithm is a sequence of logical steps
that leads to the solution of the given task.

Algorithms are usually written using a common English language. For example, look at
this maze where Karel needs to collect the gears and return to his home square:

Karel in his workshop.

This task can be solved using the following algorithm:

Algorithm

1: Make two steps forward.
2: Collect the gears.
3: Turn around.
4: Make three steps forward.

12

2.7. USUALLY, A TASK HAS MORE THAN ONE SOLUTION

Translating an algorithm to a particular programming language
yields a computer program (computer code).

A computer program (code) is an implementation of the given algorithm. The process of
translating an algorithm to a computer program is called coding. A computer program is
formed by one or more commands. Here is the Karel program corresponding to the above
algorithm:

PROGRAM 2.1. Collect the gears and return to the home square!

1 go

2 go

3 get

4 left

5 left

6 go

7 go

8 go

2.7. Usually, a task has more than one solution

Almost every task has several solutions. Let’s stay with the previous one where Karel
needs to collect the gears and return to his home square:

Karel in his workshop.

Check that this program also solves the task!

PROGRAM 2.2. A different solution to the same task

1 go

2 go

3 left

4 left

5 get

13

2. BASIC COMMANDS

6 go

7 go

8 go

And here is yet another solution:

PROGRAM 2.3. Third solution to the same task

1 go

2 go

3 left

4 get

5 left

6 go

7 go

8 go

And another solution:

PROGRAM 2.4. Fourth solution to the same task

1 go

2 go

3 get

4 right

5 right

6 go

7 go

8 go

Can you find yet another solution?

Usually, one solution stands out by being the simplest or most elegant. But in this case, all
the solutions are equally good.

2.8. How to recognize the best solution

If two different solutions require a substantially different numbers of opera-
tions, then the one which requires fewer operations is more efficient = better.

14

2.9. LOGICAL ERRORS

Check out the following solution which also solves the above task. Can you visualize in
your mind step by step what the robot is doing? Here is the maze again for reference:

Karel in his workshop.

PROGRAM 2.5. A solution which requires many more operations

1 go

2 go

3 get

4 right

5 go

6 right

7 go

8 go

9 go

10 go

11 right

12 go

This program solves the task, but it needs 12 operation while all the above programs only
needed 8.

In computer programming, one should always seek the most efficient
solution (which requires the lowest number of operations).

2.9. Logical errors

Sometimes we think that we know how to solve a task, but our solution is wrong. Staying
with the above example, let’s say that we come up with the following algorithm:

15

2. BASIC COMMANDS

Algorithm

1: Make three steps forward.
2: Collect the gears.
3: Turn around.
4: Make three steps forward.

Then we translate the algorithm to the following code, just to find out that it will not work!

PROGRAM 2.6. A program which does not work

1 go

2 go

3 go

4 get

5 left

6 left

7 go

8 go

9 go

Try to find the logical error before reading further!

An error in the algorithm is called a logical error.

2.10. Syntax rules and syntax errors

Every programming language has its own syntax rules. These are important because the
code is parsed by a machine. It cannot be vague or arbitrary. For example, the first two
syntax rules for Karel are:

(1) Always type one command per line.
(2) Every command must start at the beginning of line.

Return for a moment to the codes above and verify that all of them satisfy these syntax
rules! Of course, programmers are human, and therefore they make all sorts of mistakes.
For example the program shown below contains a syntax error because two commands
are written on the first line:

16

2.10. SYNTAX RULES AND SYNTAX ERRORS

PROGRAM 2.7. Syntax error (code violates Karel syntax rule #1)

1 go go

2 get

3 left

4 left

5 go

6 go

7 go

The following code violates Karel syntax rule #2 because of the indent on line 4:

PROGRAM 2.8. Syntax error (code violates Karel syntax rule #2)

1 go

2 go

3 get

4 left

5 left

6 go

7 go

8 go

Try to find three syntax errors in the following program!

PROGRAM 2.9. Karel program with three syntax errors

1 go

2 go

3 got

4 r1ght

5 night

6 go

7 go

8 go

Mistakes in syntax, such as misspelling a command, writing “1O” instead
of “10”, or forgetting that indentation matters are called syntax errors.

17

2. BASIC COMMANDS

2.11. Debugging and where did the word "bug" come from

Mistakes of either kind (logical errors or syntax errors) are called bugs and the procedure
of eliminating them is called debugging. Depending on how careful one was while prepar-
ing the algorithm and writing the program, debugging takes either a short time or a long
time. It does not happen often that a program works correctly right away.

Logical errors are much harder to fix than syntax errors. Therefore,
always think hard about the algorithm before coding it!

BTW, do you know why programming errors are called bugs? The first computer “bug”
was a real bug — a moth. In 1947, Rear Admiral Grace Murray Hopper was working on
the Harvard University Mark II Aiken Relay Calculator, an electromechanical computer.
Grace Hopper tells the story: “Things were going badly; there was something wrong
in one of the circuits of the long glass-enclosed computer. Finally, someone located the
trouble spot and found a moth trapped between points at Relay #70 on Panel F. Using
ordinary tweezers, we removed the two-inch moth. From then on, when anything went
wrong with a computer, we said it had bugs in it.”

Rear Admiral Grace Murray Hopper.

Grace Hopper’s legacy was an inspiring factor in the creation of the Grace Hopper Cel-
ebration of Women in Computing. Held yearly, this conference is designed to bring the
research and career interests of women in computing to the forefront. The USS Hopper
(DDG-70) is named in honor of Rear Admiral Grace Murray Hopper.

18

2.12. KAREL’S BAG

2.12. Karel’s bag

Karel has a bag where he stores all objects that he collects. Let’s return one more time to
his workshop. This time there are four objects on the floor - a phone, watch, radio and a
light bulb:

Karel in his workshop.

The robot can collect them using the following program:

1 go

2 get

3 go

4 get

5 go

6 get

7 go

8 get

In the next section we will show you how to shorten it to only three lines. For now, we
will use it in this form. When the program finishes, Karel will have four objects in his bag:

The "bag" icon shows how many objects are in Karel’s bag.

When clicking on the icon, one can see all the objects. The most recently added ones are
on top:

The contents of Karel’s bag.

19

2. BASIC COMMANDS

2.13. FILO (stack) and FIFO (queue)

Have you noticed the word FILO in the last image? It means that Karel’s bag is in FILO
mode. FILO means stack in computer science. Let’s explain briefly what it does.

FILO stands for "First In Last Out" - objects which are inserted in some order will
be removed in reverse order. In other words, the object which was inserted first will be
removed last, and the object which was inserted most recently will be removed first. Recall
that in the previous section, the four objects were collected in the following order (newest
are on top):

Karel carries four objects.

Let’s execute a program which makes Karel remove all objects from his bag and place
them on the floor again:

1 put

2 go

3 put

4 go

5 put

6 go

7 put

8 go

Since the bag is in FILO mode, objects are removed from the newest to the oldest. So, the
light bulb is removed first and the phone last:

Outcome of the program.

20

2.15. REVIEW QUESTIONS

FIFO mode
FIFO means queue in computer science. Karel’s bag can be switched to FIFO mode in

the Maze menu of the Designer. FIFO is an abbreviation of "First In First Out" - objects will
be removed from the bag in the same order as they were inserted. Here is the contents of
the bag again, with the newest items on top:

Karel’s bag is now in FIFO mode.

When the last program is executed again, the outcome will be different - the phone will
be removed from the bag first and the light bulb last:

Objects are removed in the same order as they were inserted.

2.14. Karel is case-sensitive

The Karel language is influenced by Python and as such, it is case-sensitive. This means
that the case of letters matters. For instance, the Karel command to make one step forward
is go. Any other version such as Go, GO or gO will not work - typing them will result into
an error message stating that you are attempting to use an unknown command.

2.15. Review questions

Friendly reminder - for every question either none, one, or several answers may be correct.

QUESTION 2.1. In Manual mode, Karel can be controlled using
A buttons in the Karel app.
B the keyboard.
C written programs.
D voice commands.

21

2. BASIC COMMANDS

QUESTION 2.2. When Karel faces East, what direction will he face after turning right?
A North
B East
C South
D West

QUESTION 2.3. Karel faces West. What direction will he face after turning left three times?
A North
B East
C South
D West

QUESTION 2.4. What command does Karel use to move one step forward?
A forward
B step
C go
D march

QUESTION 2.5. What command does Karel use to turn left?
A leftturn
B turnleft
C goleft
D left

QUESTION 2.6. What command does Karel use to place objects on the ground?
A place
B drop
C insert
D put

QUESTION 2.7. What command does Karel use to pick up objects from the ground?
A collect
B get
C lift
D pick

QUESTION 2.8. In Manual mode, the Shift key represents the command
A go
B left

22

2.15. REVIEW QUESTIONS

C put
D get

QUESTION 2.9. What is the equivalent to turning left?
A Turning right two times.
B Turning right three times.
C Turning right four times.
D Turning right five times.

QUESTION 2.10. What is the equivalent to turning right?
A Turning left two times.
B Turning left three times.
C Turning right five times.
D Turning left four times.

QUESTION 2.11. The computer icon represents
A the number of operations done.
B the number of steps made.
C the number of lines in the program.
D program duration in seconds.

QUESTION 2.12. In Programming mode the button is used to
A run the program.
B step through the program.
C stop the program.
D erase the program.

QUESTION 2.13. Karel makes three steps forward, turns back, and returns to the square where
he started. How many steps did he make?

A 4
B 5
C 6
D 7

QUESTION 2.14. In the previous question, how many operations did Karel do?
A 6
B 7
C 8
D 9

23

2. BASIC COMMANDS

QUESTION 2.15. What statements are true about algorithms and programs?
A An algorithm is typically written in plain English language.
B A program is typically written in plain English language.
C An algorithm is an implementation of a program.
D A program is an algorithm rewritten into a concrete programming language.

QUESTION 2.16. What are the two basic syntax rules of the Karel language?
A Type all commands using lowercase letters.
B Always type one command per line.
C Every command must start at the beginning of line.
D Type all commands using uppercase letters.

QUESTION 2.17. What of the following errors are logical errors?
A Making an indent where it should not be.
B Making a left turn instead of a right turn.
C Typing two commands on the same line.
D Making three steps instead of two.

QUESTION 2.18. What of the following errors are syntax errors?
A Misspelling a command, such as typing rlght instead of right.
B Crashing Karel into a wall.
C Typing 1O instead of 10.
D Using a command which Karel does not know.

QUESTION 2.19. What was the first programming "bug"?
A A mosquito.
B A butterfly.
C A moth.
D A bee.

QUESTION 2.20. When Karel’s bag is in FILO mode (stack), then:
A Object which was inserted first will be removed last.
B Object which was inserted first will be removed first.

QUESTION 2.21. When Karel’s bag is in FIFO mode (queue), then:
A Object which was inserted first will be removed last.
B Object which was inserted first will be removed first.

24

3. Counting Loop

In this chapter you will learn:
• What the counting loop is.
• How to use the keyword repeat to repeat single commands.
• How to comment your code, and why commenting your code is important.
• How to use the repeat loop to repeat sequences of commands.
• How to quickly and correctly identify a repeating pattern.
• What to do if a repeating pattern does not start right away.
• What to do if additional operations are needed after a repeating pattern ends.
• How to use nested repeat loops.

3.1. Counting loop and the keyword repeat

The concept of counting loop is present in all procedural programming languages such as
Python, C/C++, Java, Javascript, Fortran and others. Counting loops allow us to repeat a
command, or a sequence of commands, a given number of times.

Importantly, the number of repetitions (cycles) must be known in advance.

In the Karel language, the counting loop is defined using the keyword repeat. For ex-
ample, the following code will repeat 10 times the command go:

PROGRAM 3.1. Make 10 steps forward!

1 repeat 10

2 go

Notice that the keyword repeat is followed by the number of repetitions (cycles), and
that the body of the loop is indented. By body of the loop we mean the command or se-
quence of commands to be repeated.

Most "real" languages define the counting loop using the keyword for. The Karel
language also uses the keyword for, in the same way Python does - this will be explained
later. For now let us now look at the following maze:

25

3. COUNTING LOOP

Karel is in the library.

Suppose that the robot needs to collect the book and return to his home square. Here is
the algorithm for that:

Collect the book and return to the home square!

1: Make 10 steps forward.
2: Collect the book.
3: Turn around.
4: Make 11 steps forward.

If we did not have the repeat loop, we would implement the algorithm as shown below.
The hash symbol # is used to introduce comments - the rest of the line after this symbol is
ignored by the interpreter.

PROGRAM 3.2. Implementation without the repeat loop

1 # Make 10 steps forward:

2 go

3 go

4 go

5 go

6 go

7 go

8 go

9 go

10 go

11 go

12 # Collect the book:

13 get

14 # Turn around:

15 left

16 left

17 # Make 11 steps forward:

26

3.2. COMMENTING YOUR CODE

18 go

19 go

20 go

21 go

22 go

23 go

24 go

25 go

26 go

27 go

28 go

However, this program is too long. Let’s make it shorter!

PROGRAM 3.3. Program 3.2 rewritten using the repeat loop

1 # Make 10 steps forward:

2 repeat 10

3 go

4 # Collect the book:

5 get

6 # Turn around:

7 repeat 2

8 left

9 # Make 11 steps forward:

10 repeat 11

11 go

Again, notice that the command go on lines 3 and 11, as well as the command left on
line 8 are indented. This is very important because it makes it clear which commands
belong to the body of the loop.

Forgetting to indent the body of a loop is a syntax error.

3.2. Commenting your code

Good programmers use many comments in their programs. Namely, while writing your
program, you know exactly what every line does (at least you should). But when you
go do something else, and return to it after several weeks, the program might as well
be written by somebody else. Then, the comments will help you to quickly refresh your

27

3. COUNTING LOOP

memory. And of course, comments are absolutely crucial when you work in a team and
other team members are using your code.

Comments and empty lines do not count towards the length of the program.

So, the above Program 3.2 has 24 lines, and the shorter Program 3.3 only has 7.

3.3. Repeating a sequence of commands

The body of a loop can contain a sequence of commands, as long as all commands in this
sequence are indented. Then the entire sequence is repeated. For illustration, here is a
maze with an anchor, chest, and three gold coins:

Karel is on a ship.

Karel’s task is to collect the three gold coins, and put them in the chest at the end. This can
be done using the following program. Step through it in your mind to make sure it works
correctly!

PROGRAM 3.4. Collect the gold coins and put them in the chest!

1 # Collect the coins:

2 repeat 3

3 go

4 get

5 go

6 left

7 # Put them in the chest:

8 repeat 3

9 put

28

3.4. INDENTATION MATTERS

After the program ends, the robot is standing over the chest, facing South:

Karel’s position after the program ends.

3.4. Indentation matters

Forgetting one indent can change the outcome of your program completely. For a mo-
ment, let’s assume that we committed a syntax error and forgot to indent the command
left on line 5:

PROGRAM 3.5. Missing indent on line 5

1 repeat 3

2 go

3 get

4 go

5 left

6 repeat 3

7 put

But the forgotten indent means that the command left is no longer part of the loop! This
will change everything, and the robot will crash into the wall:

One mistake in indentation caused the robot to crash.

29

3. COUNTING LOOP

The following screenshot shows the corresponding error message, including the line where
the error occurred:

Error message generated by Program 3.5.

3.5. How to figure out repeating patterns quickly and correctly

Identifying the repeating pattern (the body of the loop) is a fundamental skill of computer
programming. Any time spent practicing this skill is time well spent. Let’s look at the
following example, where Karel’s task is to collect four coins and enter the home square:

Karel needs to collect four coins.

It is clear that there will be four cycles because there are four coins. But what commands
should be repeated? The following image helps us to answer this question:

First cycle - Karel must collect one coin and get ready in front of the next one.

30

3.5. HOW TO FIGURE OUT REPEATING PATTERNS QUICKLY AND CORRECTLY

At the beginning, Karel stands in front of a coin. Therefore, at the end of the first cycle, he
must also stand in front of a coin (the next one). And he must have collected one coin on
the way. Only then he can repeat the same sequence of commands again. Hence, we have
just figured out the body of the loop!

go

get

left

go

right

go

When stepping through these six lines for a second time, the robot collects the second coin
and moves to the third one:

Second cycle.

This is the third cycle - Karel collects the third coin and moves to the last one:

Third cycle.

31

3. COUNTING LOOP

And one last time:

Fourth and last cycle.

We already know that there are four cycles, so the first line of the program will be repeat
4. After adding the above six lines as the body of this loop, we obtain the final program:

PROGRAM 3.6. Collect four coins and enter the home square!

1 repeat 4

2 go

3 get

4 left

5 go

6 right

7 go

3.6. Stashing coins

Let’s look at another example where Karel needs to stash four coins in the chests:

Stashing coins.

32

3.6. STASHING COINS

Clearly, there will be four cycles, because there are four coins and four chests. But what
commands will form the body of the loop?

Notice that Karel stands with his back to a chest. That must also be his final position
after finishing the first cycle - except it will be the next chest which is to his right. And
moreover, one coin must be already stashed in this chest. This tells us where Karel needs
to go:

First cycle.

By now we have figured out the repeating pattern which is formed by the following 10
commands:

right

go

right

go

go

get

left

go

put

go

To verify that these 10 lines are correct, let’s step through them in our mind for a second
time:

33

3. COUNTING LOOP

Second cycle.

For a third time:

Third cycle.

And finally, one last time:

Fourth cycle.

34

3.7. COOKING POTATOES

Using the above 10 lines as the body of a repeat loop with four cycles, we obtain the
final program:

PROGRAM 3.7. Move the four coins to the chests!

1 repeat 4

2 right

3 go

4 right

5 go

6 go

7 get

8 left

9 go

10 put

11 go

In order to figure out a repeating pattern, look where Karel is initially,
and where he must be at the end of the first cycle.

3.7. Cooking potatoes

Karel’s next task is to cook some potatoes.

Karel must put all potatoes in the pots.

With what you already know, it is easy to see the repeating pattern: At the end of the
first cycle, the first potato must be in the first pot and Karel must be ready in front of the
second one:

Repeating pattern.

35

3. COUNTING LOOP

Now we know how the body of the repeat loop will look like:

right

go

get

left

go

left

go

put

right

go

Using these 10 lines as the body of a repeat loop with 4 cycles yields the final code:

PROGRAM 3.8. Put all potatoes in the pots!

1 repeat 5

2 right

3 go

4 get

5 left

6 go

7 left

8 go

9 put

10 right

11 go

3.8. When it is not be possible to start a loop right away

Sometimes the repeating pattern does not start immediately. For example, consider the
last example, but now with Karel standing at a different initial position:

Karel’s initial position changed.

36

3.8. WHEN IT IS NOT BE POSSIBLE TO START A LOOP RIGHT AWAY

This is not a good initial position to start a loop. Therefore, let’s change it! One way to do
it is make two steps forward, turn right, make another step forward, and then turn left:

go

go

right

go

left

Then the robot’s position will match his initial position from the last example, and we will
be able to use the previous code:

Adjusting Karel’s initial position so that a loop can be started.

Hence, the program to solve the new task will consist of the five commands shown above,
followed by Program 3.8:

PROGRAM 3.9. Adjust your initial position and put all potatoes in the pots!

1 go

2 go

3 right

4 go

5 left

6 repeat 5

7 right

8 go

9 get

10 left

11 go

12 left

13 go

14 put

15 right

37

3. COUNTING LOOP

16 get

17 go

3.9. Additional commands might be needed after a loop finishes

Let’s stay with the last example, but we added a home square where Karel needs to go
after putting the potatoes in the pots:

Karel moreover needs to enter the home square at the end.

Clearly, we will be able to reuse Program 3.9 but some new commands will have to be
added at the end. To figure out what these commands are, we must know where Karel
will be after the loop finishes. The best way to find out is to step through the program in
your mind. Then you will see that Karel will finish the loop standing on the right of the
last pot, looking East:

Karel’s position after finishing the loop.

Now it is easy to see that in order to get home, Karel needs to turn right, make two steps,
turn right again, and make 12 more steps:

right

go

go

38

3.10. NESTED LOOPS

right

repeat 12

go

Hence, here is the final program which consists of Program 3.9 and the above 6 lines:

PROGRAM 3.10. Get home after fulfilling the task!

1 go

2 go

3 right

4 go

5 left

6 repeat 5

7 right

8 go

9 get

10 left

11 go

12 left

13 go

14 put

15 right

16 get

17 go

18 right

19 go

20 go

21 right

22 repeat 12

23 go

3.10. Nested loops

Sometimes a repeating pattern can contain another repeating pattern. Such as in the fol-
lowing task where Karel needs to collect nine pearls which are grouped into three rows:

Karel is on the bottom of the ocean.

39

3. COUNTING LOOP

These tasks lead to nested loops - loops which contain other loops in their body. Writing
programs with nested loops requires practice, so don’t get frustrated or give up when you
struggle initially. This is perfectly normal. However, some things can be done to make the
solution of these tasks easier.

First, always start from the smaller repeating pattern - in this case, let’s collect the first
three pearls first:

repeat 3

go

get

It is important to step through this loop in your mind, to see where the robot will be after
this loop finishes:

After finishing the loop.

As you can see, Karel cannot just start the same loop right away (because after making
one step forward, there would be no pearl to collect. To get ready for it, he must make one
step forward first:

After moving one step forward.

Then he can use the same loop as before to collect the next three pearls:

repeat 3

go

get

When the second loop is finished, he stands where the sixth pearl was:

40

3.10. NESTED LOOPS

After finishing the second loop.

Again, Karel needs to make one step forward to move in front of the last row of pearls:

After moving one step forward.

To collect the last three pearls, the robot can do the same as he already did twice before:

repeat 3

go

get

go

At the end, Karel’s position will be:

Final position after completing the task.

Hence the final code to solve this task contains the above four lines, repeated three times:

PROGRAM 3.11. Collect three rows of pearls!

1 repeat 3

2 repeat 3

3 go

4 get

5 go

Notice that the commands in the inner loop are indented twice.

41

3. COUNTING LOOP

3.11. Revisiting previous programs

With the knowledge of nested loops, we can revisit and improve some of our previous
programs. Let’s start with Program 3.7 from page 35:

1 repeat 4

2 right

3 go

4 right

5 go

6 go

7 get

8 left

9 go

10 put

11 go

Here, lines 2 and 3 are repeated two times. Therefore, we can use a loop for them:

PROGRAM 3.12. Program 3.7 improved using a nested loop

1 repeat 4

2 repeat 2

3 right

4 go

5 go

6 get

7 left

8 go

9 put

10 go

Also Program 3.8 from page 36 can be improved in a similar way:

1 repeat 5

2 right

3 go

4 get

5 left

6 go

7 left

8 go

9 put

42

3.12. CRAB CAKE

10 right

11 go

Here, lines 5 and 6 are repeated two times. Therefore we can shorten it using a loop:

PROGRAM 3.13. Program 3.8 improved using a nested loop

1 repeat 5

2 right

3 go

4 get

5 repeat 2

6 left

7 go

8 put

9 right

10 go

3.12. Crab cake

Today Karel needs to collect three rows of crabs:

Karel is collecting crabs.

Each row has length four. To collect the first one, Karel can use the following loop:

repeat 4

go

get

Then, to get ready in front of the next row, he needs to make a left turn, one step forward,
and a right turn:

left

go

43

3. COUNTING LOOP

right

Finally, the solution code for this task will consist of the above two codes put together,
and repeated three times:

PROGRAM 3.14. Collect three rows of crabs!

1 repeat 3

2 repeat 4

3 go

4 get

5 left

6 go

7 right

3.13. Starfish square

This time Karel needs to collect starfish which form a 6×6 square:

Karel is collecting starfish.

This task is a bit tricky. Clearly, the square has four sides, and therefore the outer loop
will have four cycles. Each side has length six, but in order to create a repeating pattern,
Karel will only be collecting five starfish on each side. Think about it for a moment: If he
collected six starfish on the first side, then on the next one he would only have five. So he
would not be able to collect six as in the first cycle. That would not work!

44

3.13. STARFISH SQUARE

Moreover, look at Karel’s initial position above. If we wanted to start the inner loop right
away, then Karel’s position at its end would have to be as follows:

Inoptimal position outside of the square.

This could be done, but the final code would be longer and more complicated than neces-
sary. It is far better to move Karel one step forward to a better starting position as the first
thing:

Better initial position.

Now, after collecting five starfish and turning left, he is ready for a second cycle of the
outer loop! Notice that there is a starfish beneath the robot as it was at the beginning of
the first cycle:

45

3. COUNTING LOOP

After collecting the first five starfish and turning left, Karel is ready to repeat.

The following image shows Karel after finishing the nested loops. He stands on the left of
the home square and points North:

After finishing the nested loops.

Therefore, after the nested loops are finished, he needs to turn right and make one step
forward:

right

go

Here is the final code:

46

3.14. TRIPLE-NESTED LOOPS

PROGRAM 3.15. Collect all the starfish!

1 go

2 repeat 4

3 repeat 5

4 get

5 go

6 left

7 right

8 go

Always think about the algorithm first. Implementing a good algorithm is joy.
Implementing a bad algorithm is a nightmare.

3.14. Triple-nested loops

Some tasks can involve triple-nested repeating patterns. For illustration, let’s take the pre-
vious starfish square, but now with three starfish per grid square instead of one. Karel’s
task is again to collect all of them:

Now there are three starfish per grid square.

The solution program will be very similar to Program 3.15 except that the get command
needs to be replaced with a repeat loop with three cycles. As a result, the program will
contain a triple-nested loop:

47

3. COUNTING LOOP

PROGRAM 3.16. Collect all the starfish!

1 go

2 repeat 4

3 repeat 5

4 repeat 3

5 get

6 go

7 left

8 right

9 go

3.15. Pearl necklace

Let’s show one more example of a task that leads to triple-nested loops. This time Karel
needs to collect pearls from three boxes:

Three boxes of pearls.

With what you already know, it should not be difficult to step through the following pro-
gram in your mind, and verify that it works correctly:

PROGRAM 3.17. Collect three boxes of pearls!

1 repeat 3

2 repeat 2

3 go

48

3.16. EVEN MORE LEVELS OF NESTING

4 right

5 repeat 4

6 go

7 get

8 repeat 2

9 left

10 repeat 4

11 go

12 right

13 repeat 2

14 go

15 left

16 go

17 right

In theory, the number of nesting levels is unlimited. But even in the
most complicated real-world programs it hardly ever exceeds three.

3.16. Even more levels of nesting

To show just one example which involves four levels of nested loops, let’s return to our
three boxes of pearls. But this time, there will be five pearls per grid square instead of one.

Previous task, but with five pearls per grid square.

49

3. COUNTING LOOP

And this is the corresponding solution program. It was obtained from Program 3.17 by
replacing the get command with a repeat loop with five cycles:

PROGRAM 3.18. A program with four levels of nested loops

1 repeat 3

2 repeat 2

3 go

4 right

5 repeat 4

6 go

7 repeat 5

8 get

9 repeat 2

10 left

11 repeat 4

12 go

13 right

14 repeat 2

15 go

16 left

17 go

18 right

3.17. Review questions

Friendly reminder - for every question either none, one, or several answers may be correct.

QUESTION 3.1. Is commenting your code a good practice?
A Yes, because it helps you understand what you code does.
B Yes, because it helps others understand what you code does.
C No, because comments make the code too long.
D No, because writing comments takes precious time.

QUESTION 3.2. What symbol uses Karel to introduce a comment?
A %

B //

C $

D #

50

3.17. REVIEW QUESTIONS

QUESTION 3.3. What keyword does Karel use for the counting loop?
A loop

B repeat

C cycle

D while

QUESTION 3.4. What is the body of the counting loop?
A The number of repetitions.
B The first command to be repeated.
C One or more commands which are repeated.
D The last command to be repeated.

QUESTION 3.5. How is the body of the counting loop defined in Karel?
A The command(s) are enclosed in square brackets.
B The command(s) are enclosed in curly braces.
C The command(s) are written to begin at the beginning of the line.
D The command(s) are indented.

QUESTION 3.6. Karel is facing North. What direction will he face when the following program
finishes?

1 repeat 4

2 go

3 left

A West
B East
C North
D South

QUESTION 3.7. Karel is facing North. What direction will he face when the following program
finishes?

1 repeat 4

2 go

3 left

A West
B East
C North
D South

51

3. COUNTING LOOP

QUESTION 3.8. Karel faces West. Where will he face when the following program finishes?

1 repeat 365

2 left

A North
B South
C East
D West

QUESTION 3.9. How many steps will Karel make?

1 repeat 4

2 go

3 repeat 2

4 go

A 6
B 7
C 8
D 9

QUESTION 3.10. How many steps will Karel make now?

1 repeat 4

2 repeat 2

3 go

A 6
B 7
C 8
D 9

QUESTION 3.11. And finally, how many steps will Karel make with this program?

1 repeat 3

2 repeat 2

3 repeat 2

4 go

A 7
B 8
C 12
D 24

52

4. Conditions

In this chapter you will learn:
• What are conditions and why they are used in computer programming.
• Why does Karel need conditions.
• How to use the if statement and the else branch
• How to detect obstacles, collectible objects, and containers.
• New function print and a new command pass.
• About the sensors north, empty and home.
• How to use the full if-elif-else statement.
• How to combine two or more conditions using the keywords not, and, and or.

4.1. What are conditions?

Sometimes we need our program to contain parts which are not executed always, but only
in certain situations (conditionally). Imagine, for example, that our program asks the user
to enter a credit card number. Users are known to make mistakes. So, when the credit
card number is received, the program needs to execute a condition, checking whether the
number has 16 digits. If so, then the program can proceed to other tests (is the credit card
number valid?) But if not, then the program needs to ask the user to correct his/her input.
Conditions are present in every programming language, not only to check user data but
for many other types of tests as well.

4.2. Why does Karel need them?

Karel needs conditions to check his sensors. You will learn more about them soon. With
the help of his sensors, he can:

• Detect collectible objects and containers on the ground beneath him,
• detect and avoid obstacles in front of him,
• find out which way is North (and from there, any other direction),
• check his GPS coordinates and know where he is in the maze,
• check whether he is at his home square,

53

4. CONDITIONS

• check whether his bag is empty,
• pass through unknown mazes, etc.

4.3. Karel’s wall sensor and the if statement

Karel’s mazes can feature many different types of walls:

Various types of walls in Karel’s mazes.

The robot has a sensor named wall which helps him detect a wall in front of him. Here
"in front of him" means that the wall is right in front of him - he would crash into it if he
made one more step forward.

Karel’s wall sensor can only detect a wall which is right in front of the robot.

Now imagine that Karel is in a new environment that he does not know. He wants to
make one step forward. Keep in mind that he does not have eyes, so he cannot see what
you see. So, he cannot know if there is a wall in front of him or not:

Karel is in the jungle.

54

4.4. WHAT HAPPENS IF THERE IS NO WALL?

He knows that he can’t just execute

1 go

because if there was a wall in front of him, he would blindly crash into it. So, instead, he
uses the keyword if to check his sensor wall before making the step:

PROGRAM 4.1. Karel is checking for a wall before making a step

1 if wall

2 left

3 go

And this was a very good decision indeed, because otherwise he would have crashed!
The outcome of Program 4.1 is:

Karel detected and avoided a wall.

Notice that the keyword left was indented in Program 4.1 - that’s because it forms the
body of the condition.

The body of a condition is only executed when the condition is satisfied.

4.4. What happens if there is no wall?

Now let’s see what happens when the condition is not satisfied:

Karel’s wall sensor cannot detect a wall which is one step away.

When Program 4.1 is executed, the condition is not satisfied. Therefore the conditional
code - in this case just one command left on line 2 - is skipped. Hence, Karel just executes
the command go on line 3 and makes one step forward:

55

4. CONDITIONS

Karel safely made one step forward.

4.5. Other types of obstacles

Besides walls, one can find in Karel’s mazes various other obstacles:

Other types of obstacles.

Karel has a dedicated sensor to detect each one. The names of the sensors exactly corre-
spond to the names of the obstacles. For example, the fire sensor helps him detect fire,
the water sensor helps him detect water, etc. All obstacle sensors work analogously to
the wall sensor, so the robot can detect fire only when the fire is right in front of him, etc.

There are two types of obstacles - "thin ones" which only fill an edge be-
tween two grid squares, and "thick ones" which fill an entire grid square.

56

4.6. COMBINING LOOPS AND CONDITIONS

All of the thin ones are walls. Some of the thick ones are walls as well, but mainly these
are other objects such as fire, water, plant, scorpion, tools, skull, etc.

4.6. Combining loops and conditions

As you have seen in Section 3.10 (page 39), loops can contain other loops. Then we talk
about nested loops. In this section we want to show you that loops can also contain condi-
tions. To illustrate it, let’s have Karel play the Game of Arrows. How is this game played?

The Game of Arrows.

Karel knows that his home is exactly 33 steps away. Dangerous carnivorous plants are
located randomly in the maze. He only knows that when he encounters one, he must turn
left - so in fact, each plant serves as a left arrow.

Here is a program which solves this puzzle:

PROGRAM 4.2. Karel plays the Game of Arrows

1 repeat 33

2 go

3 if plant

4 left

The point of this example was to show you that when a loop contains a condition, then the
body of the condition must be indented twice. We are talking about the command left

on line 4. You already have seen the accumulation of indents in nested loops in Section

57

4. CONDITIONS

3.10 (page 39). Of course, conditions can contain loops, and conditions can also contain
other conditions. And all these can be nested. We will see more examples later.

4.7. Collectible objects

In addition to obstacles, one can find various collectible objects in Karel’s mazes:

Collectible objects - part 1.

58

4.8. COLLECTING BANANAS

Detecting collectible objects works differently from obstacles - Karel must stand above a
collectible object (in the same square) to be able to detect it. He has a dedicated sensor for
each collectible object, and the name of the sensor exactly corresponds to the name of the
object. For example, he can use the sensor beeper to detect beepers on the ground, the
sensor spider to detect spiders, etc.

Collectible objects - part 2.

4.8. Collecting bananas

For illustration, let’s look at the following maze where several bananas lie at random
positions between Karel and his home square. The home square is 12 steps ahead. The
robot’s task is to collect them all:

Karel is collecting bananas.

59

4. CONDITIONS

The robot has a sensor banana which helps him detect bananas on the ground. Here is a
program that solves this task:

PROGRAM 4.3. Collect all the bananas!

1 repeat 12

2 if banana

3 get

4 go

Notice that the condition is part of the body of a repeat loop - therefore, the command
get on line 3 is indented twice.

4.9. Containers

The third type of objects one can find in Karel’s mazes are containers. Containers are useful
when one wants Karel to place collectible objects at a designated place in the maze which
he does not know in advance.

Karel can place objects in these containers.

When installing a container into the maze, one can define its capacity (number of objects
the container can store) as well as the type of objects which can be stored in it.

Containers are especially useful when creating games,
where one of the possible game goals is fill all containers.

The process of building mazes and creating games will be explained in detail in Appen-
dices A.2 and A.3.

60

4.11. THE ELSE BRANCH

4.10. Collecting coconuts

You already saw Karel collect bananas, now let’s enlist his help collecting coconuts! There
are four coconuts placed randomly between the robot and his home square. The home
square is 12 steps away. Also, there is a box somewhere between the last coconut and the
home square. The blue number 4 located close to the box indicates that the box can store
up to four bananas. Karel’s task is to collect all the coconuts and put them into the box:

Karel is collecting coconuts.

The program to solve this task is shown below. Notice that it contains a loop which con-
tains a condition which contains another loop. Hence, the command put on line 6 is
indented three times:

PROGRAM 4.4. Put all the coconuts in the box!

1 repeat 12

2 if coconut

3 get

4 if box

5 repeat 4

6 put

7 go

4.11. The else branch

So far we have used the if statement to just skip some code when the condition was not
satisfied. But sometimes one needs to also execute alternative code. This is exactly what
the else branch does!

The else branch contains alternative code to be
executed when the condition is not satisfied.

Imagine that Karel wants to move by one square to the East. If there is a wall in front of
him, he needs to go around it. If not, he can just make one step forward:

61

4. CONDITIONS

Karel needs to move by one square East, bypassing a wall if necessary.

Here is the corresponding code:

PROGRAM 4.5. Move by one square East, bypassing a wall if necessary!

1 if wall

2 left

3 go

4 repeat 2

5 right

6 go

7 left

8 else

9 go

Since the condition on line 1 was satisfied, lines 2-7 were executed and line 9 was skipped.
This is Karel’s position after the program ends:

Karel went around the wall successfully.

Now let’s see what the program will do when there is no wall:

This time Karel’s way is clear.

Since there is no wall in front of the robot, the condition on line 1 is not satisfied. Therefore
lines 2-7 are skipped, line 9 is executed, and Karel just makes one step forward:

62

4.13. FUNCTION PRINT

Karel’s position after the program ends.

4.12. Hurdle race

Today Karel participates in a hurdle race! He must get to his home square, jumping over
(i.e., going around) several randomly placed walls. His home square is 12 steps ahead:

Hurdle race.

The solution program is based on Program 4.5:

PROGRAM 4.6. Jump over all hurdles and enter the home square!

1 repeat 12

2 if wall

3 left

4 go

5 repeat 2

6 right

7 go

8 left

9 else

10 go

4.13. Function print

As you already know, Karel shares significant functionality with Python. One such func-
tion is the function print which Karel can use to display text messages. For example,
typing

PROGRAM 4.7. Display a greeting!

1 print("Hello world, I am Karel!")

63

4. CONDITIONS

will generate the following text output:

Hello world, I am Karel!

Notice:

The text to be displayed by the print function
needs to be enclosed in quotation marks.

4.14. Sensor north

Karel has a sensor north to detect whether he is facing North (top of your screen).

The condition if north is only satisfied when the robot faces North.

Let’s try this! We will execute the code below with Karel facing various directions on the
compass:

PROGRAM 4.8. Tell if you are facing North!

1 if north

2 print("I am facing North!")

3 else

4 print("I am not facing North.")

Here are the outcomes:

"I am facing North!" "I am not facing North."

"I am not facing North." "I am not facing North."

64

4.16. FINDING NORTH

4.15. Command pass

Another command which is the same in Karel and in Python is the command pass.

Command pass does nothing.

This command is often used as a placeholder for a future code. Or to really do nothing, as
we will show in the next section.

4.16. Finding North

Imagine that Karel is facing a random direction - he does not know whether he faces
North, South, East or West. This program will make sure that the robot turns to face North:

PROGRAM 4.9. Turn to face North!

1 repeat 3

2 if north

3 pass

4 else

5 left

But why does the program begin with repeat 3 when there are four major directions on
the compass? Well, if the robot already faces North, then he does not have to turn at all.
If he faces East, then he must turn left once to face North. If he faces South, then he must
turn left two times. And when he faces West, he must turn left three times. So he never
needs to turn four times!

Imagine that Karel faces North, and step through the above program in your mind:
The condition on line 2 is always satisfied, so the program executes pass three times. The
left command is skipped every time.

Now let’s say that the robot faces East. Then the condition is not satisfied in the first
cycle, and therefore Karel turns left. But then he faces North, so in the remaining two
cycles the condition is satisfied, and so the program executes pass in the second and
third cycles of the loop.

Analogously, when the robot faces South, then the condition is not satisfied in the first
cycle, and Karel turns left. Then he faces East. So, the condition is not satisfied in the
second cycle either, and he turns left again. Then he faces North, so in the third cycle the
condition is satisfied and the robot does not turn anymore.

65

4. CONDITIONS

When Karel faces West, then the condition will never be satisfied. In the first cycle he
turns left to face South, in the second cycle he turns left to face East, and finally in the
third cycle he turns left to face North.

As a conclusion - no matter what direction he faces initially, Karel will always face
North after the program finishes. Below is a graphical breakdown of the analysis. Let’s
begin with the case when Karel initially faces North. The four images in the row show
where he is facing initially and then after the first, second, and third cycle of the loop:

Initial direction: North

Initial direction: East

Initial direction: South

Initial direction: West

4.17. Keyword not

Karel has a keyword not which can be used to reverse the outcome of conditions. For
example, if not wall is satisfied when if wall isn’t, and vice versa.

Keyword not reverses the outcome of conditions.

The behavior of the keyword not can be summarized in the following table:

66

4.18. SENSOR EMPTY

Keyword not

condition not condition
Satisfied Not satisfied

Not satisfied Satisfied

Let’s look again at Program 4.9:

1 repeat 3

2 if north

3 pass

4 else

5 left

Using the keyword not, it can be simplified to:

PROGRAM 4.10. Shorter version of Program 4.9

1 repeat 3

2 if not north

3 left

Isn’t this neat? But hold on, in Chapter 5 we will show you how this program can be
simplified further to only two lines!

4.18. Sensor empty

Karel has a sensor empty to check whether his bag is empty. When in doubt whether the
robot is carrying any objects, checking this sensor prior to executing the put command
will prevent the program from crashing:

PROGRAM 4.11. Check the bag before removing an object!

1 if not empty

2 put

The empty sensor is useful in many other situations as well - for example, when the robot
needs to remove all objects from his bag:

Karel has an unknown number of nuggets in his bag but no more than 10.

67

4. CONDITIONS

To be clear - the robot cannot know the number of objects in his bag. He does not have a
sensor that would count the objects or anything like that. Here is the corresponding code:

PROGRAM 4.12. Remove all objects from the bag!

1 repeat 10

2 if not empty

3 put

Here is the outcome of the program (there were seven nuggets in the bag):

When the program finishes, seven nuggets lie on the ground.

The empty sensor also can be used to have Karel collect only the first of several objects:

Karel only needs to collect the first water bottle.

When Karel’s bag is initially empty, the following program will do it:

PROGRAM 4.13. Only collect the first water bottle!

1 repeat 10

2 if empty

3 if bottle

4 get

5 go

When the program finishes, Karel brings home one water bottle only:

Karel arrives home with one water bottle only.

68

4.20. BOUNTY

4.19. Keyword and

As you could see, Program 4.13 had two nested conditions: if bottle inside of if
empty. As a result, the command get on line 4 was only executed when both these
conditions were satisfied. But Karel has a keyword and which can do the same in a much
simpler way!

Keyword and makes sure that two (or more)
conditions are satisfied at the same time.

The single condition if empty and bottle is identical to the two nested conditions. So,
Program 4.13 can be simplified:

PROGRAM 4.14. Program 4.13 simplified using the keyword and

1 repeat 10

2 if empty and bottle

3 get

4 go

This table summarizes how the keyword and works:

Keyword and

condition1 condition2 condition1 and condition2
Satisfied Satisfied Satisfied

Satisfied Not satisfied Not satisfied

Not satisfied Satisfied Not satisfied

Not satisfied Not satisfied Not satisfied

4.20. Bounty

Let’s show one more example which uses the keyword and. This time Karel is in a mine,
and he found an unknown number of gold nuggets. Now he needs to put them on mining
carts (one nugget per cart). The number and positions of the carts are unknown too:

Karel is in an abandoned gold mine.

69

4. CONDITIONS

If he knew that he has enough nuggets to put one on each cart, then he could use the
following program:

1 repeat 10

2 if cart

3 put

4 go

But he does not know that, and the program will fail if there aren’t enough nuggets in
Karel’s bag. Namely, at some point the robot will attempt to put a nugget on a cart when
his bag is empty. The solution to this problem is very simple though - all he needs to do is
also check that his bag is not empty before placing a nugget:

PROGRAM 4.15. Place gold nuggets on the carts!

1 repeat 10

2 if cart and (not empty)

3 put

4 go

Notice that the expression not empty is enclosed in parentheses.

Using parentheses is recommended in complex
conditions as it makes them easier to read.

It turns out that Karel had four nuggets in his bag, so when the program finishes, only
four carts are loaded:

When the program finishes, four carts are loaded.

4.21. Keyword or

Today Karel needs to collect nuggets and gems which are placed randomly between him
and his home square.

70

4.21. KEYWORD OR

Karel is collecting nuggets and gems.

This could be done with the following program:

1 repeat 10

2 if nugget

3 get

4 if gem

5 get

6 go

However, as you can see, there are two conditions with the same body which are checked
separately, one after another. In a situation like this, the code can be simplified using the
keyword or:

PROGRAM 4.16. Collect all nuggets and gems!

1 repeat 10

2 if nugget or gem

3 get

4 go

Importantly - Karel needs to collect nuggets and gems, but typing if nugget and gem on
line 2 would be a mistake. Namely, Karel would be checking for squares which contain
both a nugget and a gem. Such a condition would never be satisfied, so Karel would not
collect anything. With the current line 2, using the keyword or, the condition will be sat-
isfied when Karel detects any of the two objects - a nugget or a gem.

Keyword or makes sure that at least one of two (or more) conditions is satisfied.

The following table summarizes how the keyword or works (for two conditions). It can
be used to combine three, four, or even more conditions as well.

71

4. CONDITIONS

Keyword or

condition1 condition2 condition1 or condition2
Satisfied Satisfied Satisfied

Satisfied Not satisfied Satisfied

Not satisfied Satisfied Satisfied

Not satisfied Not satisfied Not satisfied

4.22. Danger

This time Karel has a difficult task to find his home square in a wall of fire, water, and acid!
The position of his home, as well as the positions of the fire, water, and acid are unknown:

Karel is looking for his home square.

The following program will solve the task:

PROGRAM 4.17. Find your home square!

1 repeat 10

2 if fire or water or acid

3 # Move one square to the right:

4 right

5 go

6 left

7 else

8 # You are in front of the home square - do nothing:

9 pass

10 # Make one final step home:

11 go

In Chapter 5 we will show you how this program can be simplified using a different type
of loop.

72

4.24. THE FULL IF-ELIF-ELSE STATEMENT

4.23. Sensor home

Karel has a sensor home to check whether he is in his home square. For illustration, let’s
write a simple program for the robot to walk straight ahead until he reaches his home
square, and to stay there. He does not know how far ahead the home square is:

Karel is still in the mines.

Karel knows that the width of the maze is 15 steps, so he uses a repeat loop with 15
cycles:

PROGRAM 4.18. Find your home square in the tunnel!

1 repeat 15

2 if home

3 pass

4 else

5 go

In Chapter 5 we will show you a different type of loop which will make this task easier to
solve.

4.24. The full if-elif-else statement

The Karel language provides the full Python-style if-elif-else statement which is
useful when one has more than two options to choose from. The keyword elif is an
abbreviation of "else if", which makes its meaning self-explanatory. The general form of
the if-elif-else statement is

if condition_1

action_1

elif condition_2

action_2

...

else

last_action

In place of the ellipsis (the three dots) can be one of more additional elif branches.

73

4. CONDITIONS

Today, Karel needs to sort the treasures he collected in the mines. Located randomly
between him and his home square lie on the ground light bulbs, gold nuggets, and gems.
He needs to collect the bulbs, move the nuggets one square up, and the gems one square
down:

Karel is sorting his treasures.

The solution program looks as follows:

1 repeat 11

2 go

3 if nugget # move nuggets one square up

4 get

5 left

6 go

7 put

8 right

9 right

10 go

11 left

12 elif gem # move gems one square down

13 get

14 right

15 go

16 put

17 left

18 left

19 go

20 right

21 else # it's a bulb

22 get

23 go

When the program finishes, Karel is at his home square, and the treasures are sorted!
74

4.26. REVIEW QUESTIONS

Karel’s treasures are sorted.

4.25. More is coming!

In this chapter we have only shown you the basic use of Karel’s sensors and the if,
if-else and if-elif-else statements. There is much more that can be done with
them. In the following chapters we will introduce the Boolean values True and False,
as well as Boolean expressions, variables and functions. You will learn that Karel’s sensors
are in fact Boolean functions. So, keep reading!

4.26. Review questions

Friendly reminder - for every question either none, one, or several answers may be correct.

QUESTION 4.1. Why are conditions used in computer programming?
A To repeat commands or sequences of commands.
B To check user data.
C To make runtime decisions.
D To correct syntax errors.

QUESTION 4.2. Why does Karel need conditions?
A To detect and avoid obstacles.
B To execute commands.
C To find out which way is North.
D To check whether his bag is empty.

QUESTION 4.3. When is the body of a condition executed?
A Always.
B When the condition is satisfied.
C When the condition is not satisfied.
D Never.

QUESTION 4.4. When can Karel detect an obstacle?
A When it is one step ahead.

75

4. CONDITIONS

B When it is less than two steps ahead.
C When it is is an adjacent grid square.
D When it is right in front of the robot.

QUESTION 4.5. When can Karel detect a collectible object?
A When it is right in front of the robot.
B When it is in an adjacent grid square.
C When it is beneath the robot.
D When it is above the robot.

QUESTION 4.6. Which of the following are collectible objects?
A Scorpion
B Snake
C Plant
D Spider

QUESTION 4.7. Which of the following are obstacles?
A Fishing net
B Vault
C Fire
D Acid

QUESTION 4.8. Which of the following are containers?
A Box
B Wall
C Basket
D Tomb

QUESTION 4.9. What is the else branch used for?
A For code to be executed when the condition is not satisfied.
B For code to be executed after the body of the condition.
C For code to be executed before the body of the condition.
D For code to be never executed.

QUESTION 4.10. What is the correct way to display Hello world! in Karel?
A print(Hello world!)

B print("Hello world!")

C print Hello world!

D print["Hello world!"]

76

4.26. REVIEW QUESTIONS

QUESTION 4.11. When is the condition if north satisfied?
A When the robot faces North.
B When the robot does not face North.
C When the robot is in the top (North) row of the maze.
D When the robot is in the bottom row of the maze, facing North.

QUESTION 4.12. What does the command pass do?
A It bypasses a condition.
B It bypasses a loop.
C It does nothing.
D It bypasses the else branch.

QUESTION 4.13. Karel is facing South. What direction will he face when the following pro-
gram finishes?

1 if north

2 repeat 3

3 left

A North
B South
C West
D East

QUESTION 4.14. When is the condition if empty satisfied?
A When all collectible objects in the maze have been collected.
B When Karel’s bag is empty.
C When all containers in the maze are empty.
D When at least one container in the maze is empty.

QUESTION 4.15. What line of code is equivalent to the following nested conditions?

1 if north

2 if not wall

A if north and (not wall)

B if north or (not wall)

C if north (and not) wall

D if north (or not) wall

QUESTION 4.16. Condition1 and Condition2 is satisfied when:
A Condition1 is satified, Condition2 is satisfied.

77

4. CONDITIONS

B Condition1 is not satified, Condition2 is satisfied.
C Condition1 is satified, Condition2 is not satisfied.
D Condition1 is not satified, Condition2 is not satisfied.

QUESTION 4.17. Condition1 or Condition2 is satisfied when:
A Condition1 is satified, Condition2 is satisfied.
B Condition1 is not satified, Condition2 is satisfied.
C Condition1 is satified, Condition2 is not satisfied.
D Condition1 is not satified, Condition2 is not satisfied.

QUESTION 4.18. Karel stands above a nugget (there is no gem beneath him). Which of the
following conditions will be satisfied?

A if gem and nugget

B if gem or nugget

C if gem and (not nugget)

D if (not gem) or (not nugget)

QUESTION 4.19. Karel stands above a beeper and faces a wall. Which of the following condi-
tions will be satisfied?

A if beeper and wall

B if beeper and (not wall)

C if (not beeper) or wall

D if beeper or (not wall)

QUESTION 4.20. Karel stands above a spider, away from walls, looks West, and his bag is
empty. What will the following code print?

1 if north

2 print("I am looking West!")

3 elif wall

4 print("I don't see any walls!")

5 elif not empty

6 print("My bag is empty!")

7 else

8 print("There is a spider!")

A I am looking West!
B I don’t see any walls!
C My bag is empty!
D There is a spider!

78

5. Conditional Loop

In this chapter you will learn:
• What the conditional (while) loop is.
• The conceptual difference between the conditional and counting loops.
• How to pass through unknown mazes using the First Maze Algorithm.

5.1. Conditional loop and the keyword while

The concept of conditional loop is present in all procedural programming languages. Con-
ditional loops allow us to repeat one or more commands without knowing in advance
how many repetitions will be needed.

The conditional loop is used when the number
of repetitions (cycles) is not known in advance.

In the Karel language as well as in most other procedural programming languages, the
conditional loop is defined using the keyword while.

5.2. The difference between the conditional and counting loops

Imagine that the robot knows that the home square lies 7 steps ahead:

The distance between Karel and his home square is 7 steps.

Then he can use the repeat loop to get there:

PROGRAM 5.1. Make 7 steps to your home square!

1 repeat 7

2 go

79

5. CONDITIONAL LOOP

However, what if he only knows that the home square lies ahead, but not how far?

Number of repetitions is not known in advance.

Then the conditional loop while combined with the condition not home is the right way
to bring the robot safely home:

PROGRAM 5.2. Walk until you reach the home square!

1 while not home

2 go

Notice that the keyword while is followed by a condition (in this case not home). The
body of the loop (line 2) is indented. It will be repeated while this condition is satisfied.

5.3. Step by step

Let’s step through the last program to understand exactly what it does! For simplicity,
assume that the initial distance between Karel and his home square is three steps (but the
robot does not know that):

Karel’s position before the program starts.

Initially, the robot is not at his home square. Therefore the condition not home is satisfied,
and the body of the loop is executed for the first time. Karel makes one step forward:

80

5.4. CLIMBING A PYRAMID

Karel’s position before the second cycle.

Before the second cycle, the condition is checked again. Since Karel is not home yet, not
home is satisfied, and the robot makes a second step forward:

Karel’s position before the third cycle.

Before the third cycle, the condition is checked again. Since Karel is not at his home square,
not home is satisfied, and the robot makes a third step forward:

Karel’s position before the fourth cycle.

Before the fourth cycle, the while loop checks the not home condition again. This time,
however, Karel is home and therefore the condition is not satisfied. Hence the fourth cycle
is not done and the loop ends.

Do you know the number of repetitions? Use the repeat loop!
Is the number of repetitions not known? Use the while loop!

5.4. Climbing a pyramid

In the previous section, the while loop was combined with the condition not home.
This ensured that the body of the loop was repeated as long as the robot was not home.
Naturally, all other conditions that you know from Chapter 4 can be used as well. Let’s
begin with the condition wall ("is there a wall in front of you?").

Karel’s next task is to climb a pyramid of unknown height:

81

5. CONDITIONAL LOOP

Karel is in front of a pyramid of unknown height.

This task is perfect for the while loop because Karel just needs to keep climbing, one step
at a time, while there is wall in front of him. The repeating pattern to climb one step and
get ready in front of the next one is formed by four commands:

left

go

right

go

When using the while loop, identifying repeating patterns quickly and correctly
is equally important as when using the repeat loop.

When these four commands are used as the body of a while loop, one obtains the final
program:

PROGRAM 5.3. Keep climbing until you reach the top!

1 while wall

2 left

3 go

4 right

5 go

When the robot reaches the top, there is no longer a wall in front of him, therefore the
condition wall is not satisfied, and the while loop ends:

82

5.4. CLIMBING A PYRAMID

After the program finishes.

To check that our program works for a pyramid of any size, let’s run it with a pyramid of
height 3:

Testing the program on a pyramid of height 3.

And indeed, the robot stops on the top of the pyramid!

The program still works correctly.

83

5. CONDITIONAL LOOP

5.5. Narrow escape

Let’s have a look at a while loop combined with the condition fire ("is there a fire in
front of you?"). The only way for Karel to get to his home square is through a narrow gap
between the flames. The length of the fire wall and the position of the gap are unknown.

Karel needs to find the gap in the wall of fire.

Here, the repeating pattern is to move one square to the right. It is formed by three com-
mands:

right

go

left

When using them as the body of a while loop, and adding two more go commands after
the loop finishes, one obtains the final solution program:

PROGRAM 5.4. Find the gap and enter the home square!

1 while wall

2 right

3 go

4 left

5 repeat 2

6 go

Notice that indentation is cancelled for commands which
no longer belong to the body of the while loop.

When the robot finds the gap in the flames, the condition fire is no longer satisfied,
and the while loop ends. Then the last two lines make sure that Karel reaches the home
square:

84

5.6. COMBINING THE REPEAT AND WHILE LOOPS

Karel needs to find the escape and enter his home square.

To check that the program works with an arbitrary length of the fire wall and an arbitrary
position of the gap, let’s run it with one additional maze:

Same task with different parameters.

When the program finishes, the robot is home again:

The program finished successfully.

5.6. Combining the repeat and while loops

Smart combinations of the repeat and while loops can make your programs more el-
egant and efficient. For example, imagine that Karel’s task is to run along the perimeter
of the maze and collect all keys. The maze has width 15 squares and height 12 squares.
These numbers are known, therefore it seems more natural to use the repeat loop.

85

5. CONDITIONAL LOOP

Karel is collecting keys.

PROGRAM 5.5. Collect all keys!

1 repeat 2

2 repeat 14

3 go

4 if key

5 get

6 left

7 repeat 11

8 go

9 if key

10 get

11 left

This program is perfectly correct, but as you can see, a large part of the code is there
twice, just because one time we need it inside a repeat 14 loop and another time inside
a repeat 11 loop. This can be fixed by using the while loop which automatically takes
care of the different lengths of the maze walls:

PROGRAM 5.6. Last program, improved using a while loop

86

5.7. FIRST MAZE ALGORITHM (FMA)

1 repeat 4

2 while not wall

3 go

4 if key

5 get

6 left

This program has the same outcome as the previous one, but it is more elegant because it
does not contain the same code twice.

Smart combinations of the repeat and while loops
can make your programs more elegant and efficient.

5.7. First Maze Algorithm (FMA)

Today let’s teach Karel how to pass through an arbitrary maze:

87

5. CONDITIONAL LOOP

This can be done using the First Maze Algorithm of robotics:

First Maze Algorithm

1: While you are not home, do the following:
2: If there is a wall in front of you, turn left.
3: If there is still a wall, turn around.
4: Move one step forward.

The algorithm allows a robot to pass through an arbitrary maze where
• The path is one square wide.
• At any time it goes either forward, to the left, or to the right (no forks, no loops,

no dead ends).
It can be translated to the following code:

PROGRAM 5.7. First Maze Algorithm translated to Karel code

1 while not home

2 if wall

3 left

4 if wall

5 right

6 right

7 go

Let’s see what the program does! First, what happens when Karel can just go straight?

There is no wall in front of Karel.

In this case there is no wall in front of the robot, so the condition on line 2 is not satisfied.
Therefore he skips lines 2 - 6, and just makes one step forward on line 7.

Second, what happens when the path goes to the left?

88

5.8. THREE POSSIBLE FAILURES OF THE FMA

Path goes to the left.

In this case there is a wall in front of the robot. Therefore the condition on line 2 is satisfied.
So, he makes a left turn. Then he checks for wall again on line 4, but there is no wall in
front of him. Therefore he skips lines 5 and 6, and goes to line 7. In summary, he turns left
and makes one step forward.

Third, what happens when the path goes to the right?

Path goes to the right.

Now there is a wall in front of the robot, so he condition on line 2 is satisfied and Karel
turns left. On line 4 he checks for a wall again. Since there is a wall, he executes lines 5
and 6, and makes a complete 180-degree turn. Then he makes one step forward on line 7.
In summary, Karel turns right and makes one step forward.

Keep in mind that the path needs to be one square wide, and
the maze should not contain forks, loops or dead ends.

5.8. Three possible failures of the FMA

In the previous section you have learned that the FMA assumes that
• The path is one square wide.
• At any time it goes either forward, to the left, or to the right (no forks, no loops,

no dead ends).
But what if some of these assumptions are not satisfied?

89

5. CONDITIONAL LOOP

First, let’s see what happens when Karel gets into a dead end:

Karel reached a dead end.

Since there is a wall in front of him, the condition on line 2 is satisfied, and he turns left.
Then there is a wall in front of him again, therefore the condition on line 4 is satisfied, and
he makes a 180-degree turn. But he faces a wall for a third time, and so the go command
on line 7 will crash the program.

Next, why are loops in the path prohibited? Let’s see:

The path forms a loop.

In this case Karel first turns left, and then he starts circling through the loop infinitely. He
never gets out of this maze!

Last, the FMA requires that the path be one square wide. To explain why, let’s look at
a maze where the path is wider:

The path is more than one square wide.

In this case, the robot fails to collect the key because he does not visit all squares in the
maze.

90

5.9. RIGHT-HANDED VERSION OF THE FMA

5.9. Right-handed version of the FMA

With Program 5.7, when the robot arrives at a T-intersection, he first turns left and chooses
the left path. Therefore the algorithm is sometimes called "left-handed". Alternatively, we
can first make him turn right, then check for a wall, and if there is a wall, turn around.
This will be the "right-handed" version:

PROGRAM 5.8. Right-handed version of the FMA

1 while not home

2 if wall

3 right

4 if wall

5 left

6 left

7 go

The two versions are fully equivalent when the assumptions on the maze are satisfied:
• The path is one square wide.
• At any time it goes either forward, to the left, or to the right (no forks, no loops,

no dead ends).
But when some of these assumptions are not satisfied, then the two versions may yield
different results. For example, consider a maze with a dead end in it:

The path contains a dead end.

Here the right-handed version of FMA succeeds while the left-handed version fails be-
cause the robot gets into the dead end. Of course, if the dead end was on the right, then
the outcome would be reversed. So, it would be wrong to say that one of the versions is
better than the other.

It is important to know under which conditions the FMA will work correctly.

91

5. CONDITIONAL LOOP

5.10. Other types of mazes the FMA can handle

Based on the images of mazes shown so far, you might have the impression that all the
walls must be at least one square wide. This is not the case! The FMA can also handle
mazes with thin walls such as the following one:

A maze with thin walls.

Here is the FMA again, step through it in your mind to make sure it will work!

PROGRAM 5.9. First Maze Algorithm

1 while not home

2 if wall

3 left

4 if wall

5 right

6 right

7 go

5.11. Improving Program 4.9 "Finding North"

As promised in Chapter 4, let’s revisit some programs we wrote there, and show that they
can be improved using the while loop. We can start with Program 4.9 from page 65 which
turns Karel to face North no matter which direction he is facing initially:

1 repeat 3

2 if north

3 pass

4 else

5 left

Using the while loop, the same can be achieved using just two lines:

1 while not north

2 left

92

5.13. IMPROVING PROGRAM 4.17 "DANGER"

5.12. Improving Program 4.12 "Emptying bag"

Program 4.12 from page 68 makes Karel remove all objects from his bag and place them on
the ground. Importantly, because it uses the repeat loop, it needs to make an unnatural
assumption that Karel has at most 10 objects in his bag:

1 repeat 10

2 if not empty

3 put

Using the while loop, one can forget the limiting assumption, and just write

1 while not empty

2 put

5.13. Improving Program 4.17 "Danger"

Program 4.17 from page 72 helps Karel locate his home square within a wall of fire, water
and acid. Again, because it uses the repeat loop, it needs to make an assumption on the
maximum length of the wall:

1 repeat 10

2 if fire or water or acid

3 # Move one square to the right:

4 right

5 go

6 left

7 else

8 # You are in front of the home square - do nothing:

9 pass

10 # Make one final step home:

11 go

With the while loop, the wall can be arbitrarily long, and the code becomes much simpler:

1 while fire or water or acid

2 # Move one square to the right:

3 right

4 go

5 left

6 # Make one final step home:

7 go

93

5. CONDITIONAL LOOP

5.14. Improving Program 4.18 "Tunnel"

As a last example, Program 4.18 from page 73 helps Karel locate his home square in a
tunnel. It as well uses a limiting assumption on the number of steps Karel can take:

1 repeat 15

2 if home

3 pass

4 else

5 go

Once more, the version based on the while loop is much simpler and more elegant:

1 while not home

2 go

5.15. Other types of loops: do-while, until, and for

Some languages provide the do-while or until loops. These are basically the same.
The (big) difference vs. the while loop is that they execute the body at least once before
the condition is checked at the end. However,

Python provides neither the do-while nor the until loop,
therefore we have not implemented them in Karel.

On the other hand, Python provides a for loop which is more powerful than the same
type of loop in most other programming languages. Karel has the Python for loop, and
we will get to it soon!

5.16. More is coming!

In this chapter we have only shown you the basic use of the while loop. There is much
more to it. In the following chapters we will introduce the Boolean values True and
False, as well as Boolean expressions, variables and functions. All these will expand the
possibilities of what can be done with the while loop. Therefore, keep reading!

94

5.17. REVIEW QUESTIONS

5.17. Review questions

Friendly reminder - for every question either none, one, or several answers may be correct.

QUESTION 5.1. The while loop should be used when
A The number of repetitions is known in advance.
B The number of repetitions is not known in advance.
C The repeat loop already is used elsewhere.
D The repeat loop is broken.

QUESTION 5.2. Which of the following codes are valid?
A while repeat not home

B repeat while not home

C repeat if not home

D while not home

QUESTION 5.3. At what time is the condition checked in the while loop?
A Before every cycle.
B After every cycle.
C In the middle of every cycle.
D When the loop has finished.

QUESTION 5.4. Does the body of the while loop need to always be indented?
A No.
B Yes.
C Not when it contains multiple commands.
D Not when it contains a single command.

QUESTION 5.5. What forms of the while loop are valid?
A while wall

B while not wall

C while not empty

D while empty

QUESTION 5.6. When using the while loop, does one need to identify repeating patterns?
A Yes.
B No, this is only needed when using the repeat loop.
C Yes but only when the condition does not contain not.
D Yes but only when the condition contains not.

QUESTION 5.7. What is the First Maze Algorithm (FMA) designed for?

95

5. CONDITIONAL LOOP

A To help Karel find a treasure in the maze.
B To help Karel pass through unknown mazes.
C To help Karel place collectible objects in mazes.
D To help Karel place obstacles in mazes.

QUESTION 5.8. What are the limiting assumptions on the maze for the FMA to work cor-
rectly?

A The path should be one square wide.
B The path should not contain forks.
C The path should not contain loops.
D The path should not contain dead ends.

QUESTION 5.9. How can the FMA fail when the maze contains a dead end?
A Karel can return to where he started.
B Karel can run in an infinite loop.
C Karel can crash.
D Karel can stall without moving.

QUESTION 5.10. How can the FMA fail when the maze contains forks?
A Karel can stall without moving.
B Karel can crash.
C Karel can return to where he started.
D Karel can run in an infinite loop.

QUESTION 5.11. How can the FMA fail when the path is more than one square wide?
A Karel can return to where he started.
B Karel may miss some squares.
C Karel can crash.
D Karel can stall without moving.

QUESTION 5.12. What types of loops does Karel provide?
A repeat loop
B until loop
C while loop
D do-while loop

96

6. Custom Commands

In this chapter you will learn:
• How to split complex problems into simpler ones which are easier to solve.
• How to define custom commands using the keyword def.
• How to use the optional return statement.
• The Second Maze Algorithm of robotics.
• That the shortest program may not always be the most efficient one.
• How to define new commands locally within the body of other commands.

6.1. Why are custom commands useful?

Today, Karel needs to collect 25 computer chips which form five stars:

Karel needs to collect 5 stars of chips.

The following program will solve the task, but it would not get you hired as a software
engineer. Look at it first, and then we will explain what is wrong with it:

97

6. CUSTOM COMMANDS

PROGRAM 6.1. Collect five stars of chips!

1 repeat 4

2 go

3 left

4 go

5

6 repeat 4

7 get

8 go

9 right

10 go

11 left

12 left

13 go

14 get

15 go

16

17 right

18 repeat 6

19 go

20 left

21

22 repeat 4

23 get

24 go

25 right

26 go

27 left

28 left

29 go

30 get

31 go

32

33 left

34 repeat 8

35 go

36 right

37

38 repeat 4

98

6.1. WHY ARE CUSTOM COMMANDS USEFUL?

39 get

40 go

41 right

42 go

43 left

44 left

45 go

46 get

47 go

48

49 right

50 repeat 10

51 go

52 left

53

54 repeat 4

55 get

56 go

57 right

58 go

59 left

60 left

61 go

62 get

63 go

64

65 left

66 repeat 6

67 go

68 right

69

70 repeat 4

71 get

72 go

73 right

74 go

75 left

76 left

77 go

99

6. CUSTOM COMMANDS

78 get

79 go

80

81 right

82 repeat 8

83 go

The problem with this program is that it contains a 10-line section which was copied and
pasted five times:

PROGRAM 6.2. Repeated code section

1 repeat 4

2 get

3 go

4 right

5 go

6 left

7 left

8 go

9 get

10 go

This is the section of the code which actually collects the pattern of five chips.

The same code should never be copied and
pasted at different places of your program.

Copying and pasting code makes the program not only long and cumbersome to work
with, but also extremely prone to mistakes. Imagine that the pattern of the chips changes:

Another pattern.

100

6.2. DEFINING A CUSTOM COMMAND STAR

Then the above code would have to be redone at five different places (!) Since program-
mers are only human, they are likely to make mistakes. And changing the same code at
five different places makes the likelihood of making a mistake extremely high.

6.2. Defining a custom command star

The correct approach is to define a new command for the repeated functionality. Let’s call
it star:

PROGRAM 6.3. Custom command star

1 # Collect five chips:

2 def star

3 repeat 4

4 get

5 go

6 right

7 go

8 left

9 left

10 go

11 get

12 go

Notice that custom commands are defined using the keyword def which is followed by
the name of the new command. Then, indented, comes the body of the command. The
following image shows where Karel should be when the command star is executed, and
then the robot’s position after the command finishes:

Karel’s position before and after the command star is executed.

A custom command solves a subtask - a simpler problem
whose solution is needed in order to solve the main task.

101

6. CUSTOM COMMANDS

6.3. Assembling the solution of the main task

Recall that the main task is to collect all 25 chips:

Main task.

But how can the custom command star be used to solve it, when Karel is far away from
the first star of chips?

The answer is - before executing the command star, we will program Karel to get
there! In order to stand on the first chip of the first star, the robot needs to make four steps
forward, turn left, and make one more step:

repeat 4

go

left

go

After executing this initial code, Karel is ready to execute the command star for the first
time.

Notice that one needs to identify repeating patterns quickly and correctly
in order to recognize subtasks and define suitable custom commands.

102

6.3. ASSEMBLING THE SOLUTION OF THE MAIN TASK

Karel is ready to execute the new command star.

Karel has executed the command star.

103

6. CUSTOM COMMANDS

Next, in order to get ready for collecting the second star of chips, Karel needs to turn right,
make 6 steps forward, and turn left:

right

repeat 6

go

left

After executing this code, he is ready:

Karel is ready to execute the command star again.

Now you should able to figure out the rest! Write down the commands Karel needs to get
ready to collect the third, fourth, and fifth stars of chips. The final program is as follows:

PROGRAM 6.4. The final program

1 # Collect five chips:

2 def star

3 repeat 4

4 get

5 go

6 right

104

6.3. ASSEMBLING THE SOLUTION OF THE MAIN TASK

7 go

8 left

9 left

10 go

11 get

12 go

13

14 # Main program:

15 # Collect the 1st star:

16 repeat 4

17 go

18 left

19 go

20 star

21 # Collect the 2nd star:

22 right

23 repeat 6

24 go

25 left

26 star

27 # Collect the 3rd star:

28 left

29 repeat 8

30 go

31 right

32 star

33 # Collect the 4th star:

34 right

35 repeat 10

36 go

37 left

38 star

39 # Collect the 5th star:

40 left

41 repeat 6

42 go

43 right

44 star

45 # Finish at the home square:

105

6. CUSTOM COMMANDS

46 right

47 repeat 8

48 go

Decomposing complex tasks into simpler ones which are easier to solve
is one of the most important skills in computer programming.

6.4. Collecting water bottles

Today Karel faces another complex task - to collect 27 water bottles which are stored in
three crates:

Karel needs to collect 27 water bottles from three crates.

As you already know, it would not be a good idea to go ahead and start writing code right
away. Let’s think about it first, and figure out a suitable subtask which is easier to solve
than the main task.

Here is a good candidate for such a subtask. Let’s call the new command get9:

106

6.4. COLLECTING WATER BOTTLES

Karel’s position before and after executing the command get9.

This time, let’s work like an experienced software engineer, and solve the main task first.
We know that the subtask is a routine thing to do, so we can leave it for later. The main
program is below. Step through it in your mind to verify that it is correct!

PROGRAM 6.5. Main program

1 # Main program:

2 # Get to the 1st crate:

3 go

4 # Collect the 1st crate:

5 get9

6 # Collect the 2nd crate:

7 get9

8 # Get to the 3rd crate:

9 left

10 repeat 5

11 go

12 right

13 # Collect the 3rd crate:

14 get9

15 # Make one last step home:

16 go

This was a piece of cake - which tells us that the subtask was chosen really well! It remains
to write the body of the new command get9. But you know what? We can still simplify
it by splitting it into three smaller subtasks, where one subtask will be to just collect a row
of three water bottles. Let’s call the new command get3:

Karel’s position before and after executing the command get3 (on the left,
one water bottle is beneath Karel).

107

6. CUSTOM COMMANDS

The following code will do it:

PROGRAM 6.6. Custom command get3

1 # Collect 3 water bottles:

2 def get3

3 repeat 2

4 get

5 go

6 get

And now, the new command get9 is easy to write:

PROGRAM 6.7. Custom command get9

1 # Collect 9 water bottles:

2 def get9

3 get3

4 right

5 go

6 right

7 get3

8 left

9 go

10 left

11 get3

12 go

Finally, let’s put everything together and write the solution program for the main task.
The program will consist of two custom commands and a main program:

PROGRAM 6.8. Final solution program

1 # Collect 3 water bottles:

2 def get3

3 repeat 2

4 get

5 go

6 get

7

8 # Collect 9 water bottles:

9 def get9

10 get3

108

6.5. THE OPTIONAL RETURN STATEMENT

11 right

12 go

13 right

14 get3

15 left

16 go

17 left

18 get3

19 go

20

21 # Main program:

22 # Get to the 1st crate:

23 go

24 # Collect the 1st crate:

25 get9

26 # Collect the 2nd crate:

27 get9

28 # Get to the 3rd crate:

29 left

30 repeat 5

31 go

32 right

33 # Collect the 3rd crate:

34 get9

35 # Make one last step home:

36 go

6.5. The optional return statement

Every custom command can (but does not have to) contain one or more return state-
ments. The return statement terminates and exits the custom command. For example,
the command get3 from the previous section could be written as follows:

PROGRAM 6.9. Custom command get3 (with a return statement at the end)

1 # Collect 3 water bottles:

2 def get3

3 repeat 2

4 get

5 go

109

6. CUSTOM COMMANDS

6 get

7 return

Although a custom command may contain multiple return statements,
using just one at the end is considered to be a cleaner programming style.

6.6. Arcade game

Karel’s next task is to pass through the entire maze, collecting all gold nuggets and gems:

Karel needs to collect all gold nuggets and gems.

This is a complex task, so why don’t we solve a simpler subtask first. It will be much
easier to just pass through one floor, left to right, collect all nuggets and gems, and if not
at home, then find the opening to the next floor up. Let’s call the new command floor:

Before executing the new command floor.

110

6.6. ARCADE GAME

After the command floor finishes.

As before, first let’s solve the main task assuming that we already have the command
floor. The new command will be easy to define later:

PROGRAM 6.10. Main program

1 # Main program:

2 repeat 12

3 # Pass through one floor:

4 floor

5 # If not at home, get ready at the left end of the new floor:

6 if not home

7 left

8 while not wall

9 go

10 repeat 2

11 right

And here is the new command floor:

PROGRAM 6.11. New command floor

1 # Pass through one floor and collect all nuggets and gems:

2 def floor

3 repeat 14

4 if gem or nugget

5 get

6 go

7 if gem or nugget

8 get

9 # If not home, find the opening up:

10 if not home

11 left

12 while wall

13 left

14 go

111

6. CUSTOM COMMANDS

15 right

16 go

By putting the pieces together, we obtain the final solution program:

PROGRAM 6.12. Final solution program

1 # Pass through one floor and collect all nuggets and gems:

2 def floor

3 repeat 14

4 if gem or nugget

5 get

6 go

7 if gem or nugget

8 get

9 # If not home, find the opening up:

10 if not home

11 left

12 while wall

13 left

14 go

15 right

16 go

17

18 # Main program:

19 repeat 12

20 # Pass through one floor:

21 floor

22 # If not at home, get ready at the left end of the new floor:

23 if not home

24 left

25 while not wall

26 go

27 repeat 2

28 right

A custom command must be defined, and then also called.
Defining a custom command without calling it does nothing.

112

6.7. SECOND MAZE ALGORITHM (SMA)

6.7. Second Maze Algorithm (SMA)

You already know the First Maze Algorithm of robotics which allows Karel (or any other
robot) to pass through unknown mazes. The Second Maze Algorithm (SMA) allows robots
to follow an arbitrary winding wall or a line on the ground. Imagine that Karel is in the
jungle, and he has to follow a winding line of tree branches to his home square. He stands
next to the line which is on his left-hand side:

Karel is in the jungle.

The Second Maze Algorithm of robotics will guide Karel safely to his home square:

Second Maze Algorithm

1: While you are not home, do the following:
2: Turn left.
3: While there is a wall in front of you, keep turning right.
4: Make one step forward.

It can be translated to the following code:

PROGRAM 6.13. Second Maze Algorithm translated to Karel code

1 while not home

2 left

3 while wall

4 right

5 go

Let’s have a closer look at how the algorithm works! At the beginning, the line goes
straight forward:

113

6. CUSTOM COMMANDS

On line 2, Karel will turn left:

The while loop on line 3 will do one cycle, and so Karel will turn right once:

Finally, on line 5, he will make one step forward:

OK, that worked! After two more steps forward, Karel will arrive at a right turn:

On line 2, he will turn left:

Then, the while loop on line 3 will do two cycles:

And finally, Karel will make one step forward on line 5:

114

6.7. SECOND MAZE ALGORITHM (SMA)

After this, the robot will make another right turn and two steps forward. Then the situa-
tion becomes more interesting because there is no wall on his left. BTW, this case is why
the algorithm begins with a left turn, in case you were puzzled about it:

So, on line 2 Karel will turn left:

The body of the while loop will be skipped because there is no wall in front of the robot,
and he will just make one step forward on line 5:

Now the situation repeats itself because there is no wall on Karel’s left. Hence, on line 2
he turns left:

Because there is no wall in front of him, the body of the while loop will be skipped again,
and on line 5 he will make one step forward:

115

6. CUSTOM COMMANDS

Woo-hoo, almost there! After a few more steps and one more right turn, Karel arrives at a
left turn:

On line 2 he turns left:

Since there is a wall in front of him, the while loop will make him turn right once:

And on line 5 he makes one step forward:

You already know this situation - Karel does not have a wall on his left. On line 2 he turns
left:

116

6.8. RIGHT-HANDED VERSION OF THE SMA

Then, because there is no wall in front of the robot, the body of the while loop is skipped,
and Karel just makes one step forward:

6.8. Right-handed version of the SMA

Like the First Maze Algorithm, also the Second Maze Algorithm has a right-handed ver-
sion. It is useful when Karel needs to follow a wall or line which is on his right:

Now the wall is on Karel’s right.

The algorithm is symmetric to the SMA (just switch "left" to "right" and vice versa):

Second Maze Algorithm (right-handed version)

1: While you are not home, do the following:
2: Turn right.
3: While there is a wall in front of you, keep turning left.
4: Make one step forward.

Here is the corresponding code:

117

6. CUSTOM COMMANDS

PROGRAM 6.14. SMA (right-handed version)

1 while not home

2 right

3 while wall

4 left

5 go

6.9. Rock climbing

Today, Karel will climb some rocks! His task is to collect all the beepers and enter his
home square. The shape of the rock is random, and so is the number and positions of the
beepers on it:

Karel stands in front of a desert rock.

This task is perfect for the Second Maze Algorithm (right-handed version). Just executing
Program 6.14 will make Karel follow the contour of the rock ("climb on the rock") and get
to his home square. So, the only change we need to make, is to check for a beeper after
each step the robot makes:

PROGRAM 6.15. Collect all beepers!

1 while not home

2 right

3 while wall

4 left

5 go

6 if beeper

7 get

118

6.10. PROGRAM LENGTH VS. EFFICIENCY

6.10. Program length vs. efficiency

You already know that a well thought-out program usually is shorter and more elegant
than a program which was written hastily. However, program length is not the only thing
that matters. Even more important is efficiency.

A program is efficient when it uses as few operations
as possible to solve the given task.

In this section we will show you that the shortest program may not always be the most
efficient one.

Today, Karel is collecting pearls in the ocean:

Karel is diving and collecting pearls.

This task is perfect for the Second Maze Algorithm (right-handed version) - Karel just
needs to follow the wall on his right-hand side, and it will lead him to his home square.
The solution program is practically the same as Program 6.15, the only difference being
that the robot is looking for pearls instead of beepers:

1 while not home

2 right

119

6. CUSTOM COMMANDS

3 while wall

4 left

5 go

6 if pearl

7 get

This program needs 503 operations to collect all pearls and get Karel home. Save this
number for a future comparison!

Next, let’s solve the task differently. We will write a new command column for the
robot to collect all pearls in the column above him, and get ready below the next column.
Then, the main program will just loop over all columns:

1 # Collect one column of pearls:

2 def column

3 while not wall

4 go

5 if pearl

6 get

7 left

8 left

9 while not wall

10 go

11 right

12 go

13 right

14

15 # Main program:

16 repeat 14

17 column

18 repeat 7

19 go

As you can see, this program is longer than the previous one - it has 16 lines of code as
opposed to 7. However, it provides a solution which is much more efficient. It collectc all
pearls and gets the robot home with only 242 operations!

The shortest program may not always be the most efficient one.

120

6.11. WRITING MONOLITHIC CODE VS. USING CUSTOM COMMANDS

6.11. Writing monolithic code vs. using custom commands

Sometimes it is not obvious whether one will gain anything by introducing a custom com-
mand. For illustration, let’s return to the five stars of chips from Section 6.1 (page 97), but
now the stars will form a regular repeating pattern. The task is the same - collect all the
chips!

Five stars of chips forming a repeating pattern.

The code can be written as one monolithic piece, without defining any custom commands:

PROGRAM 6.16. Collect all stars! (monolithic code)

1 go

2 repeat 5 # loop over stars

3 repeat 4 # collect one star

4 get

5 go

6 right

7 go

8 left

9 left

10 go

121

6. CUSTOM COMMANDS

11 get

12 go

13 right # move to the next star or home square

14 repeat 3

15 if not home

16 go

17 left

This code is very dense, but it does not contradict any good programming practices - there
is no part which would be copied and pasted at multiple different places in the program
(as it was in the original task in Section 6.1). The comments make it readable, so it is a
good code.

Now let’s solve the same task using the custom command star from Section 6.1. And
moreover, we will define another new command next for the robot to move to the next
star or to the home square:

PROGRAM 6.17. Collect all stars! (with custom commands)

1 # Collect one star of chips:

2 def star

3 repeat 4

4 get

5 go

6 right

7 go

8 left

9 left

10 go

11 get

12 go

13

14 # Move to the next star or home square:

15 def next

16 right

17 repeat 3

18 if not home

19 go

20 left

21

22 # Main program:

122

6.12. DEFINING COMMANDS INSIDE OTHER COMMANDS

23 go

24 repeat 5

25 star

26 next

The latter program had 21 lines (not counting empty lines and comments) while the for-
mer only had 17. This is not a huge difference. On the other hand, the latter program is
so well readable that the main program does not need any comments - it is completely
self-explanatory. Readability matters. If we had to pick up our favorite, then the slightly
longer but much more readable program would definitely be our choice.

Readability matters - when in doubt, define a custom command
rather than writing dense, monolithic code.

6.12. Defining commands inside other commands

It is possible in Karel to define commands within the body of other commands. This fea-
ture was implemented for conceptual compatibility with Python. Its usefulness becomes
clear in large, complex programs where it helps keep code better organized.

For illustration, let’s return to Section 6.4 (page 106) where Karel was collecting water
bottles from three crates. The solution Program 6.8 defined new commands get3 and
get9. Notably, the command get3 was only used within the body of the command get9

and nowhere else. Therefore, it can be defined locally in the body of the command get9:

PROGRAM 6.18. Defining command get3 locally in the command get9

1 # Collect 9 water bottles:

2 def get9

3

4 # Collect three water bottles

5 def get3

6 repeat 2

7 get

8 go

9 get

10

11 # Main body of the command:

12 get3

13 right

123

6. CUSTOM COMMANDS

14 go

15 right

16 get3

17 left

18 go

19 left

20 get3

21 go

22

23 # Main program:

24 # Get to the 1st crate:

25 go

26 # Collect the 1st crate:

27 get9

28 # Collect the 2nd crate:

29 get9

30 # Get to the 3rd crate:

31 left

32 repeat 5

33 go

34 right

35 # Collect the 3rd crate:

36 get9

37 # Make one last step home:

38 go

Importantly, the command get3 is now local to the command get9,
meaning that it is only valid within the body of the command get9.

If we tried to call the command get3 outside the body of the command get9, the program
would crash with an error message. In larger programs, limiting the validity of commands
helps improve code structure.

6.13. Create your own Karel language!

Being able to define your own commands is powerful. If you like, you can now create
your own language for Karel, adding all the commands which you were missing! For

124

6.13. CREATE YOUR OWN KAREL LANGUAGE!

example, the Karel language does not have a command to turn around 180 degrees, so
let’s add it:

PROGRAM 6.19. New command to turn around 180 degrees

1 # Turn around 180 degrees:

2 def turn180

3 repeat 2

4 left

With this new command in hand, many algorithms become simpler to implement, such
as the First Maze Algorithm:

PROGRAM 6.20. First Maze Algorithm with the turn180 command

1 # First Maze Algorithm:

2 while not home

3 if wall

4 left

5 if wall

6 turn180

7 go

Speaking of the First Maze Algorithm, why don’t we just define a new command move to
move one step forward in the maze:

PROGRAM 6.21. New command move

1 # Move one step forward in the maze:

2 def move

3 if wall

4 left

5 if wall

6 turn180

7 go

Then, passing through an unknown maze becomes extremely simple:

PROGRAM 6.22. Compact version of the FMA using the new command move

1 # Pass through an unknown maze using the FMA:

2 while not home

3 move

125

6. CUSTOM COMMANDS

Now let’s change the subject. If your native language is different from English, you can
make Karel speak your language! For example, "get" is "ukuthola" in Zulu:

PROGRAM 6.23. Translating command get to Zulu

1 # Command 'get' in Zulu:

2 def ukuthola

3 get

6.14. Review questions

Friendly reminder - for every question either none, one, or several answers may be correct.

QUESTION 6.1. Is copying and pasting code a bad thing?
A No because the length of the program grows more quickly.
B Yes because the program becomes prone to mistakes.
C No because the program will run faster.
D No because this makes programming easier.

QUESTION 6.2. Is it a good idea to split complex tasks into simpler ones?
A No because it is a loss of time.
B No because it’s more work.
C Yes because the simpler tasks are easier to solve.
D No because an experienced programmer just solves the whole task at once.

QUESTION 6.3. When does one need to identify repeating patterns?
A When working with repeat loops.
B When working with while loops.
C When working with custom commands.
D When debugging programs.

QUESTION 6.4. What keyword does Karel use to define new commands?
A new

B define

C var

D def

QUESTION 6.5. What keyword does Karel use to terminate and exit custom commands?
A end

B terminate

C exit

126

6.14. REVIEW QUESTIONS

D return

QUESTION 6.6. Can custom commands define other custom commands in their body?
A Yes.
B No.
C Only if the locally-defined command is a one-liner.
D Only if the locally-defined command does not contain a return statement.

QUESTION 6.7. Can custom commands define other custom commands in their body?
A Yes.
B No.
C Only if the locally-defined command is a one-liner.
D Only if the locally-defined command does not contain a return statement.

QUESTION 6.8. What is the purpose of the Second Maze Algorithm (SMA)?
A To pass through a maze without loops and dead ends.
B To pass through a maze without forsk, loops and dead ends.
C To follow an arbitrary winding wall or line on the ground.
D To find a way out of an arbitrary maze.

QUESTION 6.9. The left-handed version of the SMA assumes that
A Karel stands next to a wall, and the wall is on his left.
B Karel stands next to a wall, and the wall is on his right.
C Karel faces the wall.
D Karel stands with his back turned to the wall.

QUESTION 6.10. What of the following actions represent one operation in the Karel language?
A Karel makes one step forward.
B Karel turns around 180 degrees.
C Karel places an object on the ground.
D Karel walks from one side of the maze to the opposite one.

QUESTION 6.11. When is a program efficient?
A When it has as few lines as possible.
B When it is carefully thought-out.
C When it uses nested loops and conditions.
D When it solves the given task using as few operations as possible.

127

7. Variables

In this chapter you will learn:
• What are variables and why they are useful.
• What types of variables are provided in the Karel language.
• What are admissible and inadmissible names of variables.
• How to create and initialize variables.
• How to change their values and display them.
• About the assignment operator =.
• About arithmetic operators +, -, *, / and +=, -=, *=, /=.
• About comparison operators ==, !=, <, <=, > and >=.

7.1. What are variables and why are they useful?

In computer programming, variables are used to store information for later use. Karel can
use numerical variables to remember numbers:

• How many objects he found.
• How many steps he took.
• Sizes of obstacles and distances between objects.
• GPS positions of objects or obstacles.
• How many objects are in his bag.
• Results of math calculations, etc.

He can also use text string variables to store text, such as:
• Names of objects that he found.
• Text that he obtained when translating Morse to English.
• Letters that he recognized when reading Braille alphabet, etc.

Karel can also use Boolean (logical) variables to store outcomes of conditions in the form
True or False. These will be discussed in Chapter 11.

Variables are used to store useful information for later use.

128

7.3. CHOOSING THE NAMES OF VARIABLES

7.2. Types of variables

In summary, the Karel language provides the four standard types of variables which are
used in most programming languages:

• Integer variables to store whole numbers.
• Floating-point variables to store real numbers.
• Text string variables to store text strings.
• Boolean variables to store Boolean (truth) values True and False.

In addition to that, other programming languages usually provide other types of vari-
ables aimed at specific applications. For example, C/C++ which is heavily computational
provides six types of integer variables (char, int, short int, long int, unsigned short int, un-
signed long int) and two types of floating-point variables for single and double precision
numbers. Python provides the complex type to work with complex numbers. Python
also provides aggregate types including lists, tuples, dictionaries and sets. Of those, Karel
provides lists - these can be used to do amazing things, as you will see in Chapter 13.

7.3. Choosing the names of variables

The name of a variable can be almost any combination of letters of the alphabet, inte-
ger numbers, and the underscore character ’_’, such as N, m, c1, alpha, Beta, GAMMA,
my_text, etc. Only remember the following important restriction:

The name of a variable must not begin with a number.

So, names such as 1a or 8_bits cannot be used. This is the same in other programming
languages too. Names starting with one or more underscores such as _x or __my_name__
are fine.

Also, importantly, recall from Section 2.14 (page 21) that the Karel language is case-
sensitive. This means that, for example, the command left typed as Left or LEFT will
not work. The same holds for the names of variables:

Variables whose names only differ in the case of some letters,
such as n and N, are different variables in Karel.

The case-sensitivity of Karel comes from Python.

129

7. VARIABLES

7.4. Creating and initializing numerical variables

The following sample code creates several numerical variables, both integer and floating-
point, and initializes them with different values:

PROGRAM 7.1. Creating and initializing numerical variables

1 # Integer variables:

2 a = 0

3 my_age = 12

4 seconds_per_minute = 60

5 hours_per_day = 24

6 temperature = -15

7

8 # Floating-point variables:

9 half = 0.5

10 pi = 3.14159265358979323846

7.5. Assignment operator =

Notice that in the previous program, the symbol ’=’ was used to assign values to vari-
ables. This is completely different from mathematics where the same symbol is used for
comparisons and equations.

In computer programming, the symbol ’=’ has a different meaning
from mathematics: a = 0 means "assign the value 0 to the variable a".

The mathematical equality is expressed using the symbol ==. Comparison operators will
be discussed in Section 7.10 (page 133).

7.6. Displaying the values of variables

The value of a variable can change during runtime. Therefore it is important to be able to
display its value at any time. This can be done using the print statement. The following
sample code illustrates various forms of its use:

PROGRAM 7.2. Displaying values of variables

1 a = 3

2 b = 5

130

7.7. BASIC MATH OPERATIONS WITH VARIABLES

3 d = 15.5

4 print(a)

5 print("Value of b is", b)

6 print("Distance d is", d, "meters.")

The output of this program is:

7.7. Basic math operations with variables

You already know how to create variables and initialize them with values. These values
may come not only as raw numbers, but also from other variables and/or math expres-
sions. Let’s begin with addition (symbol ’+’) and subtraction (symbol ’-’):

PROGRAM 7.3. Addition and subtraction

1 item_1 = 12.5

2 item_2 = 7.5

3 amount_start = 30

4 total_cost = item_1 + item_2

5 amount_end = amount_start - total_cost

6 print("Initial amount:", amount_start)

7 print("Total cost of both items:", total_cost)

8 print("Remaining amount:", amount_end)

Output:

The symbols ’*’ and ’/’ represent multiplication and division, respectively:

PROGRAM 7.4. Multiplication and division

1 secs = 5400

2 hrs = secs / 3600

3 mins = hrs * 60

4 print(secs, "seconds =", mins, "minutes =", hrs, "hours")

Output:
131

7. VARIABLES

7.8. Keywords inc and dec

Karel provides the keywords inc and dec which can be used to increase and decrease the
value of any numerical variable by one, respectively:

PROGRAM 7.5. Increasing and decreasing the values of variables by one

1 m1 = 10

2 m2 = 20

3 inc(m1)

4 print("m1 =", m1)

5 dec(m2)

6 print("m2 =", m2)

Output:

Both the commands inc and dec can also be used to increase and decrease the values of
numerical variables by more than one:

PROGRAM 7.6. Increasing and decreasing the values of variables by more
than one

1 m1 = 10

2 m2 = 20

3 inc(m1, 3)

4 print("m1 =", m1)

5 dec(m2, 5)

6 print("m2 =", m2)

Output:

7.9. Arithmetic operators +=, -=, *= and /=

Karel can modify the values of numerical variables using the Python operators +=, -=, *=
and /=. Here a += 2 is exactly the same as a = a + 2, b -= 3 is the same as b = b

- 2, c *= 4 means c = c * 4, and d /= 5 is d = d / 5.

132

7.10. COMPARISON OPERATORS ==, !=, <, <=, > AND >=

PROGRAM 7.7. Operators +=, -=, *= and /=

1 a = 11

2 b = 15

3 c = 5

4 d = 25

5 a += 2

6 b -= 3

7 c *= 4

8 d /= 5

9 print("a =", a)

10 print("b =", b)

11 print("c =", c)

12 print("d =", d)

Output:

7.10. Comparison operators ==, !=, <, <=, > and >=

Sometimes one needs to decide whether the value of a variable (say X) is equal to the value
of another variable (say Y). As you already know, typing if X = Y is wrong because the
assignment operator = will just assign the value of Y to the variable X. The mathematical
equality should be expressed using the symbol == which means "equal to":

PROGRAM 7.8. Comparison operator ==

1 X = 99

2 Y = X

3 if X == Y

4 print("X and Y are the same.")

5 else

6 print("X and Y are different.")

Output:

The comparison operator != is the opposite of ==. It means "not equal to":

133

7. VARIABLES

PROGRAM 7.9. Comparison operator !=

1 X = 1

2 Y = 1.1

3 if X != Y

4 print("X and Y are different.")

5 else

6 print("X is the same as Y.")

Output:

The comparison operator < means "less than":

PROGRAM 7.10. Comparison operator <

1 X = -3

2 Y = X + 6

3 if X < Y

4 print("X is less than Y.")

5 else

6 print("X is greater than or equal to Y.")

Output:

The comparison operator > means "greater than":

PROGRAM 7.11. Comparison operator >

1 X = 1

2 Y = X

3 dec(Y)

4 if X > Y

5 print("X is greater than Y.")

6 else

7 print("X is less than or equal to Y.")

Output:

134

7.11. COUNTING MAPS

The remaining two operators, <= and >= are similar to < and >, respectively, except they
admit equality. Let’s just show an example for <=:

PROGRAM 7.12. Comparison operator <=

1 X = 2

2 Y = 2 * X - 2

3 if X <= Y

4 print("X is less than or equal to Y.")

5 else

6 print("X is greater than Y.")

Output:

7.11. Counting maps

Hooray! Finally we know variables well enough to tackle first programming challenges
with them. Today, Karel’s task is to count maps which lie randomly between him and his
home square. He does not know how many there are. The resulting variable should be
named nmaps. He should display the value of this variable at the end.

Karel is counting maps.

The easiest way to do this is to first solve a simpler task - just go and collect all the maps.
This is something you can easily do by now:

1 while not home

2 if map

3 get

4 go

In a second step, we will modify this program to create a new variable nmaps at the
beginning and initialize it with zero. Then, if Karel finds a map, instead of collecting it he
will increase the value of nmaps by one. And, at the end he will use the print statement
to display the value of nmaps:

135

7. VARIABLES

PROGRAM 7.13. Count the maps!

1 nmaps = 0

2 while not home

3 if map

4 inc(nmaps)

5 go

6 print("I found", nmaps, "maps.")

Output:

7.12. Water supply

Karel is carrying an unknown number of water bottles, and there is an unknown number
of bags between him and his home square. He needs to put one water bottle in each
one. Also, he should count how many water bottles he has at the beginning, subtract
the number of water bottles which he places in the bags, and then store the number of
remaining water bottles in a variable named wb.

Karel is putting water bottles in bags.

The only way for the robot to count the water bottles he has is to place all of them on the
ground, and then collect them again:

1 wb = 0

2 while not empty

3 put

4 inc(wb)

5 while bottle

6 get

Then, he needs to walk to his home square, and put a water bottle in each bag. Since Karel
might have fewer water bottles than there are bags, the put command should only be
executed if the robot’s bag is not empty. Here is the complete code:

136

7.13. KAREL AND THE FIBONACCI SEQUENCE

PROGRAM 7.14. Put the water bottles in the bags!

1 # Count the water bottles:

2 wb = 0

3 while not empty

4 put

5 inc(wb)

6 while bottle

7 get

8 print("I am starting with", wb, "water bottles.")

9 # Walk to home square and put one water bottle in each bag:

10 while not home

11 if bag and (not empty)

12 put

13 dec(wb)

14 print("Found a bag - placing a water bottle.")

15 go

16 print("Now I only have", wb, "water bottles left.")

Below is the text output. It reveals that Karel had 23 water bottles at the beginning:

7.13. Karel and the Fibonacci sequence

The Fibonacci sequence is one of the most famous sequences of mathematics. It begins
with 1, 1 and each new number is the sum of the last two. So, the third number is 1 + 1 =
2. The fourth number is 1 + 2 = 3. The fifth number is 2 + 3 = 5 and so on. The first ten
numbers in the sequence are

1, 1, 2, 3, 5, 8, 13, 21, 34, 55.

Today, Karel wants to create this sequence by himself! He begins with two beepers on the
floor, and two variables n1 = 1 and n2 = 1 for the first two numbers in the sequence:

137

7. VARIABLES

Karel is going to create the Fibonacci sequence.

In order to obtain the third number, he will create a helper variable new_n and assign
the sum n1 + n2 to it. Then he will place new_n beepers on the ground. He will assign
the value of n2 to n1 by executing n1 = n2, and then also the value of new_n to n2 by
executing n2 = new_n. Then he will move to the next grid square. Hence, after this he
will have the last two numbers of the sequence stored in n1 and n2 again. This process
will be repeated eight times, because Karel wants to calculate the first 10 numbers of the
Fibonacci sequence. Here is the corresponding program:

PROGRAM 7.15. Create the Fibonacci sequence!

1 n1 = 1

2 n2 = 1

3 repeat 8

4 new_n = n1 + n2

5 repeat new_n

6 put

7 n1 = n2

8 n2 = new_n

9 go

And indeed, at the end he obtains the correct result:

The first 10 numbers of the Fibonacci sequence.

7.14. Review questions

Friendly reminder - for every question either none, one, or several answers may be correct.

QUESTION 7.1. Why do we use variables?
A To store useful information for later use.
B To make the program run faster.
C To make the program use less memory.

138

7.14. REVIEW QUESTIONS

D To make the program shorter.

QUESTION 7.2. What types of variables are provided in Karel?
A Numerical variables.
B Text string variables.
C Boolean (logical variables).
D Complex variables.

QUESTION 7.3. Which of the following are valid names of variables?
A my_name

B 1st_name

C _x_

D NUM1

QUESTION 7.4. Are x1 and X1 the same variable in Karel?
A Yes
B No

QUESTION 7.5. How does one create a new variable A and assign the value 10 to it?
A A(10)

B A := 10

C A == 10

D A = 10

QUESTION 7.6. What is the correct way to display the value of a numerical variable A?
A print(’A’)

B print("A")

C print(A)

D print[A]

QUESTION 7.7. The initial value of a variable x is 5. What will its value be after executing
inc(x, 3)?

A 5
B 8
C 2
D An error will be thrown.

QUESTION 7.8. The initial value of a variable y is 9. What will its value be after executing
dec(y)?

A 10

139

7. VARIABLES

B 8
C 9
D An error will be thrown.

QUESTION 7.9. The initial value of a variable n1 is 3. What will its value be after executing
n1 -= 4?

A 1
B -1
C -3
D An error will be thrown.

QUESTION 7.10. The initial value of a variable n2 is 12. What will its value be after executing
n2 /= 4?

A 8
B 16
C 3
D An error will be thrown.

QUESTION 7.11. The value of a variable m is 5. Will the condition if m != 5 be satisfied?
A Yes
B No

QUESTION 7.12. The value of a variable M is 10. Will the condition if M <= 11 be satisfied?
A Yes
B No

QUESTION 7.13. What numbers belong to the Fibonacci sequence?
A 1
B 5
C 33
D 55

QUESTION 7.14. The initial values of the variables x, y and z are 1, 2, 3, respectively. What
values will they have after executing x += y, y *= x and z = y / z ?

A x will be 2, y will be 4, z will be 6.
B x will be 3, y will be 6, z will be 2.
C x will be 2, y will be 4, z will be 3/4.
D x will be 3, y will be 2, z will be 6.

140

8. Functions

In this chapter you will learn:
• How to define and use functions which return values.
• About functions which accept arguments.
• About local and global scopes.
• The difference between local and global variables.
• That using global variables may lead to problems.
• If functions can change the values of their arguments.

8.1. Defining and using functions

You already know how to define and use custom commands. A function is very similar to
a command but in addition it uses the return statement to return a value. Functions also
can accept arguments - this will be discussed in Section 8.6 (page 149). But for the time
being let us stay with functions which do not need any arguments.

One of them is a simple function distance which will measure Karel’s distance to
the nearest wall. The robot will simply walk to the wall, count his steps, and at the end
return their number:

Karel measures the distance to the nearest wall.

Here is the corresponding program:

PROGRAM 8.1. Karel measures the distance to the nearest wall

1 # Walk to the nearest wall, count steps, and return their number:

2 def distance

3 d = 0

4 while not wall

5 go

6 inc(d)

141

8. FUNCTIONS

7 return d

8

9 # Call the function and display the result:

10 result = distance

11 print("The distance was", result, "steps.")

Notice that the function is first defined on line 2 and then called on line 10.
Just defining a function, without calling it, does nothing.

On line 10, the value returned from the function was assigned to the variable result.
Since the sole purpose of this variable was to provide the value to the print statement, it
could be omitted. The function call could be placed into the print statement directly:

PROGRAM 8.2. Function call is placed directly into the print statement

1 # Walk to the nearest wall, count steps, and return their number:

2 def distance

3 d = 0

4 while not wall

5 go

6 inc(d)

7 return d

8

9 # Call the function and display the result:

10 print("The distance was", distance, "steps.")

And here is the outcome of the program:

8.2. Builder

This time, Karel’s task is to measure the length of a straight wall. He stands just South of
it, facing North.

Karel needs to measure the length of a wall.

142

8.2. BUILDER

First he must locate one end of the wall - say the left one:

This can be done using the following code:

1 # Locate the left end of the wall:

2 while wall

3 left

4 go

5 right

6 right

7 go

8 left

Then, he can create a new variable named length, and move along the wall until he
reaches its other end:

After every step, he increases the value of length by one:

1 # Measure the length:

2 length = 0

3 while wall

4 right

5 go

6 left

7 inc(length)

The above two code segments can be used to define a function measure which will be
easily reusable to measure the length of any straight wall:

PROGRAM 8.3. Measure the length of any straight wall

1 def measure

2 # Locate the left end of the wall:

3 while wall

4 left

5 go

143

8. FUNCTIONS

6 right

7 right

8 go

9 left

10 # Measure the length:

11 length = 0

12 while wall

13 right

14 go

15 left

16 inc(length)

17 return length

18

19 # Call the function and display the result:

20 print("The length of the wall is:", measure)

For the wall shown above, the program will display the following message:

8.3. Storekeeper

Today, Karel needs to count crates which form a rectangular pattern. Its dimensions are
unknown. He stands just South of it, facing North. For example, the rectangle below has
4 rows and each row has 5 crates, so altogether there are 4 * 5 = 20 crates.

Karel is counting crates.

Karel will count the crates as follows:
(1) Count the crates in the bottom row.
(2) Store the result in a variable named t.

144

8.3. STOREKEEPER

(3) Create a new variable total and initialize it with 0.
(4) Walk North along the crates, and for each row add t to total.

So, for the example above, Karel will calculate total = 5 + 5 + 5 + 5 = 20. In the
program below, notice that to count the crates in the first row he uses exactly the same
method that he used to measure the length of the wall in Section 8.2 (page 142):

PROGRAM 8.4. Count the crates!

1 # Count crates in one row:

2 def measure

3 # Locate left-most crate:

4 while crate

5 left

6 go

7 right

8 right

9 go

10 left

11 # Count crates:

12 r = 0

13 while crate

14 right

15 go

16 left

17 inc(r)

18 go

19 return r

20

21 # Count crates in the rectangle:

22 def multiply

23 # Count the crates in the first row:

24 t = measure

25 # Turn to face the crate:

26 left

27 # Initialize variable 'total' with 0:

28 total = 0

29 # Walk north. For each row, add 't' to 'total':

30 while crate

31 inc(total, t)

32 right

145

8. FUNCTIONS

33 go

34 left

35 return total

36

37 # Main program:

38 print("I counted", multiply, "crates!")

And here is the corresponding output:

8.4. Local variables and local scope

The function distance from Section 8.1 (page 141),

1 def distance

2 d = 0

3 while not wall

4 go

5 inc(d)

6 return d

the function measure from Section 8.2 (page 142),

1 def measure

2 # Locate the left end of the wall:

3 while wall

4 left

5 go

6 right

7 right

8 go

9 left

10 # Measure the length:

11 length = 0

12 while wall

13 right

14 go

15 left

16 inc(length)

17 return length

146

8.5. GLOBAL VARIABLES AND GLOBAL SCOPE

as well as the functions row and multiply from Section 8.3 (page 144) have one thing
in common: They both introduce a variable which is only used in the function and not
elsewhere in the program. Such a variable is called a local variable. The validity of a local
variable is only within the body of the function or command where it was defined.

We say that a local variable is defined in the local scope.
A local variable is only valid in the function or command where it was defined.

This is analogous to what you already know from Section 6.12 (page 123) - commands
defined inside of other commands were local as well, and only valid within the command
or function where they were defined.

Let’s see what happens if we try to use a local variable outside of its local scope:

1 def distance

2 d = 0

3 while not wall

4 go

5 inc(d)

6 return d

7

8 print("The distance was", distance, "steps.")

9 print("The last value of d was:", d)

The program will crash with an error message:

8.5. Global variables and global scope

The main program is called global scope. A variable which is defined in the global scope is
called global.

Global variables are valid not only everywhere in the main program,
but also in all functions and commands.

147

8. FUNCTIONS

Global variables are sometimes used when they are needed in multiple commands or
functions. However, their use should be kept to a minimum because they make the code
prone to mistakes. For example, one may define a global variable in one program module,
then forget about it, and define it again, but with a different value, in another module. Or,
one can define in another module a command or function with the same name. Or one can
inadvertently change the value of a global variable inside a function or command. These
errors are then extremely difficult to find.

The use of global variables should be kept to a minimum
because they make the program prone to mistakes.

The following example is an example of bad programming. It uses a global variable to
pass a value into a function. The function back will make Karel move back N steps:

1 def back

2 left

3 left

4 repeat N

5 go

6 right

7 right

Then in the main program one could write

1 N = 4

2 back

and Karel would move back 4 steps. Elsewhere one could write

1 N = 7

2 back

and the robot would move back 7 steps. However, the global variable N "polluted" the
main scope and made the program prone to mistakes. In the following section we will
show you a much better way to define such a function back.

148

8.6. FUNCTIONS THAT ACCEPT ARGUMENTS

8.6. Functions that accept arguments

In Karel (same as in Python and other programming languages), a function can accept one
or more arguments. When defining such a function, one introduces one or more parame-
ters in paretheses following the function name, such as in def place(p). The names of
the parameters then can be used within the function’s body as local variables.

The following function place(p) will make Karel place p objects on the ground be-
neath him (it assumes that there are enough objects in the robot’s bag):

1 def place(p)

2 repeat p

3 put

When one wants Karel to place two objects, one calls the function name with the number
2 in parentheses:

1 place(2)

And when calling

1 place(5)

the robot will place 5 objects. To give another example, let’s define a function back(n) to
move Karel back n steps:

1 def back(n)

2 left

3 left

4 repeat n

5 go

6 right

7 right

Then, to make Karel move back 4 steps, one calls:

1 back(4)

And when one needs to move the robot 7 steps back, one types:

1 back(7)

149

8. FUNCTIONS

Functions can accept two or even more arguments. For example, the following function
rectangle(a, b) will make Karel create a rectangle of gears with side lengths a and b:

PROGRAM 8.5. Create a rectangle of gears!

1 # Create a rectangle of gears with dimensions a x b:

2 def rectangle(a, b)

3 repeat 2

4 repeat a-1

5 put

6 go

7 left

8 repeat b-1

9 put

10 go

11 left

12

13 # Create a 6 x 4 rectangle:

14 rectangle(6, 4)

Here is the outcome of the program:

8.7. Can a function change the values of its arguments?

This is an interesting question. Any function may attempt to modify the value of the argu-
ments which are passed to it. For example, the following function double(d) executes
the command d *= 2 in its body. Now the question is - when the function is called with
an argument x as double(x), will the value of x be doubled when the function finishes?

1 # Double the value of the argument and return it:

2 def double(d)

3 d *= 2

4 return d

150

8.7. CAN A FUNCTION CHANGE THE VALUES OF ITS ARGUMENTS?

5

6 # Main program:

7 x = 2

8 print("Value of x before function call:", x)

9 xx = double(x)

10 print("Value of x after function call: ", x)

11 print("Value of xx:", xx)

The output of the program shows that the answer is "no". The function was not able to
change the value of the argument x which was passed to it:

We can try the same with a text string variable, and we can actually pass it to the same
function double(d) because the operation *= works for text strings:

1 # Double the value of the argument and return it:

2 def double(d)

3 d *= 2

4 return d

5

6 # Main program:

7 x = "Karel"

8 print("Value of x before function call:", x)

9 xx = double(x)

10 print("Value of x after function call: ", x)

11 print("Value of xx:", xx)

The output of the program shows that the answer is "no" again:

The values of numerical variables, text strings, and Booleans cannot be changed
by functions. We say that they are immutable types.

151

8. FUNCTIONS

8.8. Review questions

Friendly reminder - for every question either none, one, or several answers may be correct.

QUESTION 8.1. What is the difference between a command and a function?
A Commands cannot use the return statement.
B Commands do not return values.
C Functions return values and can accept arguments.
D There is no difference.

QUESTION 8.2. Check all correct statements!
A A function which is defined must also be called.
B When a function is defined, it is not automatically called.
C A function can just be called, it does not have to be defined.
D When a function is defined but not called, nothing happens.

QUESTION 8.3. Can a function call be placed directly into the print statement?
A Yes
B No

QUESTION 8.4. Check all true statements about local variables!
A They are defined in the global scope, and valid everywhere in the main program.
B They are defined in a command or function, and valid only within that command or func-

tion.
C They are defined in the global scope, and valid only in some command or function.
D They are defined in a command or function, and valid everywhere in the main program.

QUESTION 8.5. Check all true statements about global variables!
A They are defined in a command or function, and valid everywhere in the main program.
B They are defined in the global scope, and valid only in some command or function.
C They are defined in a command or function, and valid only within that command or func-

tion.
D They are defined in the global scope, and valid everywhere in the main program.

QUESTION 8.6. Which types of variables in Karel can have their values changed by functions?
A Numerical variables.
B Text string variables.
C Boolean variables.
D Complex variables.

152

9. Text Strings

In this chapter you will learn:
• How to work with text strings and text string variables.
• How to assign text strings to variables.
• How to display them and compare with each other.
• How to concatenate them and multiply with integers.
• How to obtain the length of a text string.
• How to use the for loop to parse text strings one character at a time.
• How to extract individual characters from a text string using their indices.
• How to reverse and slice text strings.
• How to display quotes and check for substrings.

At the end we will solve some very interesting tasks:
• Counting occurrences of a substring in a text string.
• Finding where a substring is located in a text string.
• Searching for substrings and replacing them with others.
• Removing substrings from text strings.
• Swapping substrings in a text string,
• and even executing a text string as Karel code!

9.1. Raw text strings and text string variables

In the Karel language, working with text strings is similar to Python, although Karel does
not implement all Python’s functionality.

A text string is a sequence of characters enclosed in either single quotes, such as ’Hello
World!’ or in double quotes, such as "I am Karel". It does not matter whether single
or double quotes are used. A text string which contains no characters is called empty text
string. The following screenshot shows a few examples:

153

9. TEXT STRINGS

Sample text strings.

9.2. Assigning, displaying, and comparing text strings

A text string can be assigned to a variable using the standard assignment operator =:

1 name = 'Karel'

Both raw text strings and text string variables can be displayed using the print statement
exactly as you would expect:

1 print(name)

2 print("My name is", name)

Output:

Text strings (in either raw form or as text string variables) can be compared using the same
comparison operator == as numbers:

1 str1 = 'Karel'

2 if str1 == 'Karel'

3 print("That's him, Karel!")

4 else

5 print("No, that's not him.")

Output:

154

9.4. MULTIPLYING TEXT STRINGS WITH INTEGERS

9.3. Concatenating text strings

One can concatenate two or more text strings using the same + symbol which is used to
add numbers:

PROGRAM 9.1. Concatenating text strings

1 str1 = 'Tomorrow '

2 str2 = 'I will visit '

3 result = str1 + str2 + "Karel."

4 print(result)

As you can see, it does not matter whether one concatenates raw text strings or text string
variables. The output of this program is:

Notice that each of the text strings str1 and str2 had an empty space at the end. It is
important to account for empty spaces, they are not inserted automatically. Let’s see what
happens when we leave them out:

PROGRAM 9.2. Pay attention to empty spaces!

1 str1 = 'Tomorrow'

2 str2 = 'I will visit'

3 result = str1 + str2 + "Karel."

4 print(result)

Output:

9.4. Multiplying text strings with integers

Any text string (in raw form or as a variable) can be multiplied with a (positive) integer,
as shown in the following example:

PROGRAM 9.3. Multiplying text strings with integers

1 name = 'Karel '

2 text = name * 5 + 'everywhere!'

3 print(text)

Output:
155

9. TEXT STRINGS

9.5. Length of a text string

Karel provides the Python function len to obtain the length of a text string. The following
example shows various flavors of using it:

1 print(len('Karel'))

2 txt1 = 'I am Karel'

3 print(len(txt1))

4 txt2 = 'Karel rocks!'

5 n = len(txt2)

6 print(n)

Output:

9.6. Parsing a text string with the for loop

Karel provides the Python for loop to parse text strings one character at a time. The key-
word for is followed by a variable for the individual characters, the keyword in and the
name of the text string to be parsed. For example, let’s parse the text string ’Karel’ and
just display all the characters:

1 for c in 'Karel'

2 print(c)

Output:

9.7. Reversing text strings

As another example, let’s use the for loop to reverse a text string!

156

9.8. EXTRACTING INDIVIDUAL CHARACTERS BY THEIR INDICES

1 name = 'Karel the Robot'

2 r = ''

3 for c in name

4 r = c + r

5 print(r)

Output:

9.8. Extracting individual characters by their indices

Characters in a text string are internally enumerated, starting with 0 (first character), 1
(second character), 2 (third character), etc. These numbers are called indices (the singular
of the word is index). Appending the index in square brackets at the end of either a raw
text string or a text string variable yields the desired character. For illustration, let’s ex-
tract all five individual characters from the text string ’Robot’ using their indices 0, 1, 2,
3 and 4:

1 name = 'Karel the Robot'

2 print(name[0])

3 print(name[1])

4 print(name[2])

5 print(name[3])

6 print(name[4])

Output:

Keep in mind that the indices start from zero. Therefore, the 1st character
has index 0, the 2nd character has index 1, the 5th character has index 4, etc.

Now let’s extract individual characters from a raw text string:

157

9. TEXT STRINGS

1 print('Karel the Robot'[10])

2 print('Karel the Robot'[11])

3 print('Karel the Robot'[12])

4 print('Karel the Robot'[13])

5 print('Karel the Robot'[14])

Output:

9.9. Using negative indices

When one needs to extract characters from the end of a text string, it is possible to use
negative indices. The last character has index -1, the one before last has index -2, etc. Let’s
illustrate this on a simple example:

1 name = 'Karel the Robot'

2 print(name[-5])

3 print(name[-4])

4 print(name[-3])

5 print(name[-2])

6 print(name[-1])

Output:

The last character in a text string has index -1,
the one before last has index -2, etc.

158

9.10. SLICING TEXT STRINGS

9.10. Slicing text strings

Slicing text strings is another useful functionality provided by Python. Sometimes one
needs to extract not only one character, but an entire word or a substring. Actually,
you already know how to do this: To extract a five-character word from the beginning
of a text string name, one can type name[0] + name[1] + name[2] + name[3] +

name[4]:

1 name = 'Karel the Robot'

2 first = name[0] + name[1] + name[2] + name[3] + name[4]

3 print(first)

Output:

But, the same can be done more easily using slicing. A five-character slice from the begin-
ning of a text string name is name[:5]:

1 name = 'Karel the Robot'

2 first = name[:5]

3 print(first)

Output:

A three-character slice starting with the second letter is name[1:4]:

1 name = 'Karel the Robot'

2 word = name[1:4]

3 print(word)

Output:

A five-character slice from the end of the text string name is name[-5:]:

1 name = 'Karel the Robot'

2 last = name[-5:]

3 print(last)

159

9. TEXT STRINGS

Output:

A three-character slice starting with the fifth letter from the end is name[-5:-2]:

1 name = 'Karel the Robot'

2 word = name[-5:-2]

3 print(word)

Output:

9.11. Displaying quotes in text strings

Displaying quotes is a bit tricky, because these are the symbols which are used to define
text strings. To illustrate the problem one can get into, let’s try to display the text She
said: "Hello, it is nice to meet you.":

1 print("She said: "Hello, it is nice to meet you."")

Output:

The reason why this did not work is that the interpreter found a complete and correct text
string "She said: " in the print function. Then it expected either a closing paren-
thesis, or a comma, or perhaps one of the + or * operators. But instead, it found Hello

which did not make any sense. Was this a misplaced variable? The interpreter had no
choice other than to throw an error.

The way to prevent this confusion is to enclose the text string that contains double
quotes in single quotes:

1 print('She said: "Hello, it is nice to meet you."')

160

9.12. CHECKING FOR SUBSTRINGS

Output:

An analogous problem will arise when one tries to display a text string that contains single
quotes by enclosing it in single quotes:

1 print('Hi, it's Karel!')

Output:

The problem can be fixed by enclosing the text string in double quotes:

1 print("Hi, it's Karel!")

Output:

9.12. Checking for substrings

Another Python feature provided in the Karel language is the ability to check if a text
string contains a given substring. This is done using the keyword in:

PROGRAM 9.4. Checking for a raw substring

1 txt = "The robot is really good. His name is Karel."

2 if "Karel" in txt

3 print("The text string contains the word 'Karel'.")

4 else

5 print("The text string does not contain the word 'Karel'.")

Output:

And of course this can be done using a variable as well:

161

9. TEXT STRINGS

PROGRAM 9.5. Checking for a text string variable

1 txt = "Karel the IV was a Roman emperor. But Karel the robot is cooler."

2 name = "Karel"

3 if name in txt

4 print("The text string contains the word 'Karel'.")

5 else

6 print("The text string does not contain the word 'Karel'.")

Output:

9.13. Counting occurrences of substrings

Sometimes one needs to count how many times certain text string is present in another
text string. Python has a built-in functionality for this which is not present in Karel. So,
let’s implement it! Your task is to write a function count(sub, txt) to count the num-
ber of occurrences of a substring sub in a text string txt. If the substring is not found,
the function should return zero. Try to solve this task by yourself before looking at the
solution below!

Solution: You already know from Section 9.10 (page 159) how to slice text strings. As the
first thing we will introduce a counting variable (named for example result), initialize
it with zero, and measure the length of both sub and txt. Let’s denote their lengths by
l1 and l2, respectively. The algorithm will be very simple. We will take the first [0:l1]
slice of txt and compare it with sub. If there is a match, we will increase result by one.
Then we will do the same for the [1:l1+1] slice of txt, for the [2:l1+2] slice of txt,
etc. There are l2-l1+1 such slices. At the end, we will return the value of result. Here
is the corresponding Karel code:

PROGRAM 9.6. Count the occurrences of a substring in a text string!

1 # Count the occurrences of the substring sub in the text string txt:

2 def count(sub, txt)

3 result = 0

4 l1 = len(sub)

5 l2 = len(txt)

6 index = 0

7 repeat l2 - l1 + 1

162

9.14. FINDING THE POSITIONS OF SUBSTRINGS

8 slice = txt[index:index+l1]

9 if slice == sub

10 inc(result)

11 inc(index)

12 return result

13

14 # Main program:

15 text = "The Karel programming language was named after Karel Čapek."

16 word = "Karel"

17 print("The word '" + word + "' was found", count(word, text), "times.")

Output:

9.14. Finding the positions of substrings

Sometimes one needs to locate the position of a text string in another text string. This
means, if the substring is present, to find the index of its first character in the longer text
string. If the substring is not present, the result should be -1. Again, this is a built-in func-
tionality in Python which is not provided in Karel. Therefore, let’s implement it! Your task
is to write a function find(sub, txt) to return the position of (the first occurrence of)
a substring sub in a text string txt. If the substring is not found, return -1. Try to solve
this task by yourself before looking at the solution below!

Solution: In Section 9.13 (page 162) we learned how to count the occurrences of a sub-
string in a text string. We will use it as the first thing to check if the substring sub is
part of the text string txt. If not, we will return -1. The rest will be similar to the func-
tion count from Section 9.13: We will run a loop and compare the [0:l1], [1:l1+1],
[2:l1+2] etc. slices of txt to sub. We know at this point that the substring is there
because if it was not there, we would have returned -1 previously. So, once a match is
found, we return the starting index of the slice. Here is the corresponding program:

PROGRAM 9.7. Find the position of a substring sub in a text string txt!

1 # Return the position of (the first occurrence of) a substring sub

2 # in a text string txt. If the substring is not found, return -1:

3 def find(sub, txt)

4 # Check for the substring:

163

9. TEXT STRINGS

5 if not sub in txt

6 return -1

7 # Now we know the substring is there:

8 index = 0

9 l1 = len(sub)

10 l2 = len(txt)

11 repeat l2 - l1 + 1

12 slice = txt[index:index+l1]

13 if sub == slice

14 return index

15 inc(index)

16

17 # Main program:

18 text = "The Karel programming language was named after Karel Čapek."

19 word = "Karel"

20 result = find(word, text)

21 if result == -1

22 print("The substring was not found.")

23 else

24 print("The substring was found at position", result)

Output:

9.15. Searching and replacing in text strings

Another functionality which is provided in Python but not in Karel is searching for sub-
strings in text strings and replacing them with other substrings. Therefore, let’s imple-
ment it! Your task is to write a function replace(txt, sub1, sub2) which in the text
string txt finds all occurrences of the substring sub1, replaces them with the substring
sub2, and returns the result as a new text string. Try to solve the task on your own before
looking at the solution below!

Solution: We will begin with creating an empty text string for the result (named, for
example, result). This is where we will add parts of the text string txt which do not
contain sub1, and where we will add sub2 instead of sub1. At the beginning, we will
call find(sub1, txt) to find the position pos of the first occurrence of the substring

164

9.16. REMOVING SUBSTRINGS

sub1 in txt. While the substring is there (pos is not -1), we will add to result the part
of txt which precedes sub1 (its [:pos] slice) and sub2. Then we remove this part from
txt by redefining txt by its slice txt[pos + len(sub1):]. This process is repeated
while the substring sub1 is present in txt. At the end, we add the remaining part of txt
to result and return it. Here is the corresponding code:

PROGRAM 9.8. Replace all occurrences of a substring sub1 with another
substring sub2!

1 # Replace all occurrences of substring sub1 with substring sub2:

2 def replace(txt, sub1, sub2)

3 result = ''

4 pos = find(sub1, txt)

5 while pos != -1

6 result += txt[:pos] + sub2

7 txt = txt[pos + len(sub1):]

8 pos = find(sub1, txt)

9 return result + txt

10

11 # Main program:

12 text = "The Carlos programming language was named after Carlos Čapek."

13 result = replace(text, "Carlos", "Karel")

14 print(result)

Output:

9.16. Removing substrings

Your next task is to write a function remove(sub, txt) to remove all occurrences of a
substring sub from a text string txt. Try to solve this task by yourself before checking
the solution below!

Solution: This is a simple application of the function replace() from Section 9.15 (page
164). It is sufficient to replace all occurrences of the substring sub with an empty text
string "":

PROGRAM 9.9. Remove all occurrences of a substring from a text string!

1 # Replace all occurrences of substring sub with the empty string "":

165

9. TEXT STRINGS

2 def remove(sub, txt)

3 return replace(txt, sub, "")

4

5 # Main program:

6 text = "The Karel the Robot programming language was named after Karel

Čapek."

7 result = remove("the Robot ", text)

8 print(result)

Output:

9.17. Swapping substrings

Your next task is to write a function swap(txt, sub1, sub2) to swap the substrings
sub1 and sub2 in the text string txt. Try to come up with a solution on your own before
looking at our solution below!

Solution: This is another simple application of the function replace() from Section
9.15 (page 164). Let’s define a helper text string which for sure will not be present in the
text string txt. For example, we can define help = "__NCLAB_HELPER_STRING__".
Then, one can perform the following three steps:

(1) Replace in txt all occurrences of the substring sub2 with help.
(2) Replace in txt all occurrences of the substring sub1 with sub2.
(3) Replace in txt all occurrences of the substring help with sub1.

Here is the corresponding program:

PROGRAM 9.10. Swap two substrings in a text string!

1 # Swap substrings sub1 and sub2 in text string txt:

2 def swap(txt, sub1, sub2)

3 help = "__NCLAB_HELPER_STRING__"

4 txt = replace(txt, sub2, help)

5 txt = replace(txt, sub1, sub2)

6 txt = replace(txt, help, sub1)

7 return txt

8

9 # Main program:

166

9.18. EXECUTING TEXT STRINGS AS CODE

10 text = "The Čapek programming language was named after Čapek Karel."

11 result = swap(text, "Karel", "Čapek")

12 print(result)

Output:

9.18. Executing text strings as code

Executing text strings as code is another built-in functionality in Python which is not
present in Karel. So let’s implement it! This will be really neat – imagine sending a robot
an SMS from your phone and watch him act on it! Hence, your task is to write a function
eval(txt) to execute the text string txt as Karel code. There will be some limitations
on how this text string may look like (these limitations help you because they make your
programming simpler):

• All characters in the text string txt should be lowercase.
• The text string should not contain empty spaces at the ebginning or at the end.
• Individual commands should be separated with exactly one empty space ’ ’.
• The text string only should contain the five basic commands go, left, right,
get and put.

An example of such a text string txt is "go get left go put right go".

Solution: This is a straightforward application of the if-elif-else statement. If the
first two characters of the text string txt are "go", we will execute the command go,
and remove this command and the following empty space from txt by redefining txt =

txt[3:]. Otherwise, if the first four characters of txt are "left" then we execute the
command left and remove this command and the following empty space from txt by
redefining txt = txt[5:]. The same we do for the remaining commands right, get
and put. The else branch should be used for the case when there is a problem with the
text string txt and none of the five basic commands is recognized. All of this should be
enclosed in a while loop which checks whether the text string txt is not empty.

Here is the corresponding program:

PROGRAM 9.11. Evaluate a text string as Karel code!

1 # Evaluate text string txt as Karel code.

2 # Only the basic commands go, left, right, get, put are accepted.

167

9. TEXT STRINGS

3 # All commands must be lowercase, and separated with one empty space.

4 # No empty spaces at the beginning or at the end!

5 def eval(txt)

6 while txt != ""

7 if txt[:2] == "go"

8 go

9 txt = txt[3:]

10 elif txt[:4] == "left"

11 left

12 txt = txt[5:]

13 elif txt[:5] == "right"

14 right

15 txt = txt[6:]

16 elif txt[:3] == "get"

17 get

18 txt = txt[4:]

19 elif txt[:3] == "put"

20 put

21 txt = txt[4:]

22 else

23 print("Unknown command, exiting.")

24 return

25 print("Finished!")

26 return

27

28 # Main program:

29 txt = "go get left go put right go"

30 eval(txt)

We will test the program on a simple maze where Karel needs to make one step forward,
collect a gold bugget, turn left, make another step forward, put the nugget in the bag,
make a right turn, and make one more step to enter his home square. In other words, the
text string will have the form "go get left go put right go":

After the program finishes, the nugget is in the bag and Karel is home:

168

9.20. REVIEW QUESTIONS

Also, the following message is displayed at the end:

9.19. Your homework

The function eval(txt) from Section 9.18 (page 167) has a few technical limitations
which are easy to remove:

• All characters in the text string txt should be lowercase.
• The text string should not contain empty spaces at the ebginning or at the end.
• Individual commands should be separated with exactly one empty space ’ ’.

Remove all of them in order to make the function more robust!

Then there is one more substantial limitation:
• The text string only should contain the five basic commands go, left, right,
get and put.

Extend the function eval(txt) to allow simple repeat loops (not nested) whose body
is enclosed in two empty spaces!

9.20. Review questions

Friendly reminder - for every question either none, one, or several answers may be correct.

QUESTION 9.1. Which of the following are valid text strings?
A Hi, I am Karel!

B ’Hi, I am Karel!’

C "Hi, I am Karel!"

D (Hi, I am Karel!)

QUESTION 9.2. What is the correct way to assign the text string "Karel" to a text string
variable name?

A name := "Karel"

B name == "Karel"

169

9. TEXT STRINGS

C name = "Karel"

D "Karel" == name

QUESTION 9.3. What is the correct way to compare two text strings str1 and str2?
A if str1 = str2

B if str1 == str2

C if str2 = str1

D if str2 == str1

QUESTION 9.4. How can one display the contents of a text string variable txt?
A print("txt")

B print(’txt’)

C print(txt)

D print[txt]

QUESTION 9.5. How can one concatenate two text strings txt1 and txt2?
A txt1, txt2

B concat(txt1, txt2)

C txt1 + txt2

D txt1 * txt2

QUESTION 9.6. How can one define a new text string echo which contains 10 times the text
string "Help! "?

A echo = "Help!" * 10

B echo = "Help! " + 10

C echo = "Help! " * 10

D echo = "Help! Help! " * 5

QUESTION 9.7. What is the way to obtain the length of a text string text?
A len(text)

B length(text)

C length text

D text(length)

QUESTION 9.8. What is the correct way to parse a text string story one character at a time?
A for c in story

B for story in c

C in story for c

D repeat for c in story

170

9.20. REVIEW QUESTIONS

QUESTION 9.9. What is the index of the letter ’e’ in Karel?
A 2
B 3
C 4
D -2

QUESTION 9.10. What is the slice txt[3:6] of the text string "Thermometer"?
A "rmo"

B "mom"

C "ome"

D "met"

QUESTION 9.11. What is the slice txt[-6:-3] of the text string "Thermometer"?
A "rmo"

B "mom"

C "ome"

D "met"

QUESTION 9.12. Which of the following are valid text strings in Karel?
A ’Hi, it’s me!’

B "Hi, it’s me!"

C "Hi, it"s me!"

D ’Hi, it"s me”

QUESTION 9.13. How can one check if text string txt contains a substring sub?
A if txt has sub

B if sub in txt

C if txt in sub

D if contains(txt, sub)

QUESTION 9.14. How can one swap the contents of two text strings str1 and str2?
A Execute str1 = str2 and then str2 = str1

B Create a helper variable help. Execute help = str2, then str2 = str1 and then
str2 = help

C Create a helper variable help. Execute help = str1, then str2 = str1 and then
str2 = help

D Create a helper variable help. Execute help = str2, then str2 = str1 and then
str1 = help

171

10. Testing Your Programs

In this chapter you will learn:
• About the history and applications of the Morse code.
• How to write your own Morse to English translator.
• That every new command or function needs to be tested.
• How to test your new commands and functions.
• That testing your code thoroughly can save you a lot of grief.

10.1. Morse code project - Part I

The Morse code is a classical communication method which translates standard English
characters to short sequences of dots and dashes. It was invented by Samuel Finley Breese
Morse (1791 - 1872) with the help of his friend Alfred Vail from New York University.

In 1838, at an exhibition in New York, Morse transmitted 10 words per minute using
what would forever be known as Morse code. In 1843, he received money from Congress
to build a line from Baltimore to Washington DC, and, on 24 May 1844, he sent the first
inter-city message: “What hath God wrought!” By 1854 there were 23,000 miles of tele-
graph wire in operation across the US. Morse code was later adapted to wireless radio. By
the 1930s it was the preferred form of communication for aviators and seamen, and it was
vital during the Second World War. BTW, here is the complete Morse code for reference:

Morse code.

172

10.1. MORSE CODE PROJECT - PART I

Today, you will teach Karel how to read the Morse code! In the maze below, each row
represents one letter. The lollipops stand for dots and the candies for dashes. In other
words, the message below represents ’-.-/.-/.-././.-..’ which means ’KAREL’:

Karel’s Morse code (lollipop = dot, candy = dash).

Writing a Morse code translator is a fairly complex task, therefore let’s decompose it into
smaller subtasks. First, Karel needs a function row to read one row (one Morse symbol
written with lollipops and candies) and return the corresponding text string of dots and
dashes. The function should assume that Karel stands in front of the symbol, facing East.
The robot’s final position should be the same, just in the next row down. For example,
this maze contains just one letter ’K’:

Therefore the program

1 print(row)

should bring Karel to his home square, and display the text string ’-.-’. The corre-
sponding program is straightforward - make sure to read all the comments!

PROGRAM 10.1. Read one Morse symbol

1 # Read one Morse symbol written in terms of lollipops and candies,

2 # and return it as a text string of dots and dashes:

3 def row

173

10. TESTING YOUR PROGRAMS

4 go # move on to the first object

5 morse = '' # create an empty text string

6 while lollipop or candy # scan the Morse symbol

7 if lollipop

8 morse += '.' # lollipop means dot

9 else

10 morse += '-' # candy means dash

11 go

12 repeat 2 # turn around at the end

13 right

14 n = len(morse) # figure out how many steps you made

15 repeat n+1

16 go

17 left # move one row to the South

18 go

19 left

20 return morse # return the resulting text string

21

22 # Main program:

23 print(row)

And indeed, when the program is executed with the above maze, Karel enters his home
square and the correct symbol ’-.-’ is displayed:

Well, that’s great, but it only proves that the function row works correctly for the letter
’K’. What about the remaining 25 letters?

10.2. Testing the function row

Testing your software costs time, and sometimes it can be lengthy. But it is time very well
spent. Therefore, let’s stop writing new programs for a while, and prepare three mazes
which will cover all 26 letters of the English alphabet:

174

10.2. TESTING THE FUNCTION ROW

Below is a simple testing program which will read all rows in the maze and display the
corresponding Morse codes in terms of dots and dashes:

PROGRAM 10.2. Simple program to test the function row

1 while not home

2 print(row)

Let’s run it with the three testing mazes above. And indeed, all three outputs are correct!

Software companies, depending on their size, use software testers or entire testing depart-
ments. There is a famous quote which says "The longer you wait to fix a problem, the more
expensive and troublesome it will be to fix." Therefore, the best option is to prevent problems
from happening in the first place. And we just did that - we made sure that there won’t
be any problems with our function row. This is golden.

175

10. TESTING YOUR PROGRAMS

If your program includes custom commands or functions,
it is important that you test each of them thoroughly.

10.3. Morse code project - Part II

Awesome! Now we have a function row which turns Karel maze symbols into regular
Morse code text strings. Next, we need a function to translate Morse text strings to Eng-
lish letters. This is straightforward, although lengthy because we have to account for all
26 English characters. The following program includes the function as well as a main
program which should display the letter ’K’:

PROGRAM 10.3. Translate individual Morse symbols to English

1 # Translate one Morse symbol to an English letter:

2 def english(symbol)

3 if symbol == '.-'

4 return 'A'

5 elif symbol == '-...'

6 return 'B'

7 elif symbol == '-.-.'

8 return 'C'

9 elif symbol == '-..'

10 return 'D'

11 elif symbol == '.'

12 return 'E'

13 elif symbol == '..-.'

14 return 'F'

15 elif symbol == '--.'

16 return 'G'

17 elif symbol == '....'

18 return 'H'

19 elif symbol == '..'

20 return 'I'

21 elif symbol == '.---'

22 return 'J'

23 elif symbol == '-.-'

24 return 'K'

25 elif symbol == '.-..'

26 return 'L'

176

10.3. MORSE CODE PROJECT - PART II

27 elif symbol == '--'

28 return 'M'

29 elif symbol == '-.'

30 return 'N'

31 elif symbol == '---'

32 return 'O'

33 elif symbol == '.--.'

34 return 'P'

35 elif symbol == '--.-'

36 return 'Q'

37 elif symbol == '.-.'

38 return 'R'

39 elif symbol == '...'

40 return 'S'

41 elif symbol == '-'

42 return 'T'

43 elif symbol == '..-'

44 return 'U'

45 elif symbol == '...-'

46 return 'V'

47 elif symbol == '.--'

48 return 'W'

49 elif symbol == '-..-'

50 return 'X'

51 elif symbol == '-.--'

52 return 'Y'

53 elif symbol == '--..'

54 return 'Z'

55 else

56 print("Wrong Morse symbol detected in english() - returning '*'.")

57 return '*'

58

59 # Main program:

60 s = '-.-'

61 print(english(s))

Notice that if the function encounters an unknown symbol, it will return ’*’. This ’*’
will then appear in the resulting English text string, so it will be easy to spot. OK, let’s
execute the program now!

177

10. TESTING YOUR PROGRAMS

This is the expected output - great! But what about the remaining 25 letters?

10.4. Testing the function english(symbol)

It is important to call the function with all 26 Morse symbols ’.-’, ’-...’, ’-.-.’,
..., ’--..’ and verify that indeed we obtain the corresponding English letters ’A’,
’B’, ’C’, ..., ’Z’:

PROGRAM 10.4. Program to test the function english()

1 # Testing the function english():

2 r = ''

3 s = '.-'

4 r += english(s)

5 s = '-...'

6 r += english(s)

7 s = '-.-.'

8 r += english(s)

9 s = '-..'

10 r += english(s)

11 s = '.'

12 r += english(s)

13 s = '..-.'

14 r += english(s)

15 s = '--.'

16 r += english(s)

17 s = '....'

18 r += english(s)

19 s = '..'

20 r += english(s)

21 s = '.---'

22 r += english(s)

23 s = '-.-'

24 r += english(s)

25 s = '.-..'

26 r += english(s)

27 s = '--'

178

10.4. TESTING THE FUNCTION ENGLISH(SYMBOL)

28 r += english(s)

29 s = '-.'

30 r += english(s)

31 s = '---'

32 r += english(s)

33 s = '.--.'

34 r += english(s)

35 s = '--.-'

36 r += english(s)

37 s = '.-.'

38 r += english(s)

39 s = '...'

40 r += english(s)

41 s = '-'

42 r += english(s)

43 s = '..-'

44 r += english(s)

45 s = '...-'

46 r += english(s)

47 s = '.--'

48 r += english(s)

49 s = '-..-'

50 r += english(s)

51 s = '-.--'

52 r += english(s)

53 s = '--..'

54 r += english(s)

55 print(r)

And here is the corresponding output,

which shows that the function works correctly.

Always make sure to test each new command and function.
Test them individually, separated from the rest of the code.

179

10. TESTING YOUR PROGRAMS

10.5. Morse code project - Part III

Super, we are ready to finish! With the heavy lifting done by the functions row and
english (symbol), the main function morse2english is very easy to write:

PROGRAM 10.5. Putting all parts together

1 # Read Morse symbols in Karel maze, and translate them to English text:

2 def morse2english

3 text = ''

4 while not home

5 text += english(row)

6 return text

7

8 # Main program:

9 print(morse2english)

The final program will comprise the functions row, english(symbol), and the last code
above. Now let’s run it with the original maze,

Output:

Indeed, this result is correct! The function morse2english is so simple that it does not
require testing. Importantly, it works for the sample maze above, and its two essential
parts, the functions row and english(symbol), were thoroughly tested.

180

10.7. REVIEW QUESTIONS

10.6. Your homework

Here is something for you to think about: The function row does not consider empty
spaces between words. Would you be able to adjust it to return an empty space ’ ’ if it
encounters an empty row in the maze?

And as a second task - implement your own English to Morse translator! It’s OK to stay
on the text level, you don’t need to create a graphical representation of the Morse symbols
in the maze.

10.7. Review questions

Friendly reminder - for every question either none, one, or several answers may be correct.

QUESTION 10.1. Is it mandatory that software developers test their software?
A Yes.
B No.

QUESTION 10.2. Is it recommended that software developers test their software?
A Yes.
B No.

QUESTION 10.3. What happens if a problem in the software is not fixed for a long time?
A It disappears by itself.
B Everybody forgets about it.
C It will be very expensive and time consuming to fix.
D It may cause users to get upset and lose interest in the software.

QUESTION 10.4. Is software testing supposed to be a quick and easy process?
A Yes, otherwise nobody would be doing it.
B Yes, because the testing does not have to be thorough.
C Yes, because someone else will do it.
D No, testing software can take a lot of time.

QUESTION 10.5. Should each new command or function be isolated from the rest of the code
for testing?

A No, that would just be more work.
B No, testing a new command or function within the original code is better.
C No, because the new command or function might not work when put back.
D Yes, to avoid the influence of potential bugs elsewhere in the code.

181

11. Boolean Values, Variables, Expressions, and Functions

In this chapter you will learn:
• Who was George Boole.
• What is the so-called Boolean (logical) algebra.
• About Boolean values True, False and Boolean variables.
• That the comparison operators ==, !=, <, >, <= and >= yield True or False.
• How to work with Karel’s GPS coordinates.
• How to evaluate complex Boolean expressions.
• That Karel’s sensors are Boolean functions
• That the if statement and the while loop both expect Boolean values.
• How to create an infinite loop and when such a loop can be useful.

11.1. George Boole

George Boole was an English mathematician and philosopher. During his era, logic was
considered to be part of philosophy rather than mathematics. One of his greatest contri-
butions is the mathematical formalization of logic which he introduced in his famous 1854
book The Laws of Thought. There he explained that logical processes and conclusions can
be written using mathematical symbols and formulas, and he introduced his legendary
Boolean algebra which long after his death became a fundamental pillar of modern com-
puter science.

George Boole (1815 - 1864).

182

11.2. QUICK INTRODUCTION TO LOGIC

11.2. Quick introduction to logic

You certainly know the Harry Potter movies whose main stars are three young characters
Harry Potter, Hermione Granger and Ron Weasley. One can state various things about
them which are either true or false. For example, "Harry was born in the Suffolk village
of Lavenham" is true. Actually, let’s use True instead of just "true" to emphasize that
the evaluation of the statement resulted into a logical value. Analogously, evaluating the
statement "Hermione Granger is a boy" yields False.

To simplify all this, let’s denote the statement "Harry was born in Lavenham" by A and
the statement "Hermione Granger is a boy" by B. Then A is True and B is False.

From Chapter 4 you already know the logical operations and, or, not. The operation
not flips True to False and vice versa. For example, saying "Harry was born in Laven-
ham" and "Hermione Granger is not a boy" is True. This can be abbreviated as

A and (not B) is True

Saying "Harry was not born in Lavenham" and "Hermione Granger is not a boy" is
False. In short, this is the same as

(not A) and (not B) is False

It is also False to say that "Harry was born in Lavenham" and "Hermione Granger is a
boy":

(not A) and B is False

Finally, also saying that "Harry was not born in Lavenham" and "Hermione Granger is a
boy" is False:

A and B is False

Since A is True and B is False, the above four statements can be summarized in a table:

True and True is True

False and True is False

True and False is False

False and False is False

This table is called the the truth table of the and operator.

183

11. BOOLEAN VALUES, VARIABLES, EXPRESSIONS, AND FUNCTIONS

Now imagine that you like to eat pizza. But not all kinds - you will only eat a pizza if it
has cheese or salami on it. So, when we abbreviate "has cheese" by A and "has salami" by
B, you will eat a pizza only if A is True or if B is True:

A or B is True

If they bring you a pizza which only has cheese (A is True) but not salami (B is False),
you will still eat it:

A or (not B) is True

And you will also eat a pizza which does not have cheese (A is False) but has salami (B
is True):

(not A) or B is True

However, when a pizza has neither (both A and B are False), you will not eat it:

(not A) or (not B) is False

These four outcomes can be summarized in another important table which is called the
truth table of the or operator:

True or True is True

False or True is True

True or False is True

False or False is False

11.3. What is Boolean algebra?

Looking at the truth tables above, G. Boole realized that if Truewas replaced by a nonzero
number (let’s just say "nonzero") and False by 0, then the first table (of the and operator)
would look just like multiplication:

nonzero · nonzero = nonzero

0 · nonzero = 0

nonzero · 0 = 0

0 · 0 = 0

184

11.4. BOOLEAN VALUES AND VARIABLES IN KAREL

Since then, the and operation has been called logical product. And similarly, the truth table
of the or operator looks just like addition, and therefore has been called logical sum:

nonzero + nonzero = nonzero

0 + nonzero = nonzero

nonzero + 0 = nonzero

0 + 0 = 0

You may have noticed that the first line has a minor imperfection, because the sum of two
nonzero numbers can be zero (for example when adding -1 and 1). But this imperfection
goes away when we limit ourselves from all nonzeros to only positive nonzeros.

11.4. Boolean values and variables in Karel

Karel provides the keywords True and False. For example, typing

1 print(True)

will display

And when typing

1 print(True)

one will obtain

The operations and, or, not can be applied to the Boolean values True and False di-
rectly. For illustration, this short program will reproduce the truth table of the and opera-
tor:

1 print(True, " and", True, " is", True and True)

2 print(False, "and", True, " is", False and True)

3 print(True, " and", False, "is", True and False)

4 print(False, "and", False, "is", False and False)

185

11. BOOLEAN VALUES, VARIABLES, EXPRESSIONS, AND FUNCTIONS

Output:

This program will reproduce the truth table of the or operator:

1 print(True, " or", True, " is", True or True)

2 print(False, "or", True, " is", False or True)

3 print(True, " or", False, "is", True or False)

4 print(False, "or", False, "is", False or False)

Output:

The True and False values can be assigned to variables. Such variables then become
Boolean variables. For example,

1 b1 = True

2 print(b1)

will display

and

1 b2 = False

2 print(b2)

will yield

The logical operations and, or can be applied to the Boolean variables. As a last example,
let’s reproduce the truth table of the and operator again:

186

11.5. GPS SENSORS GPSX AND GPSY

1 t = True

2 f = False

3 print(t and t)

4 print(f and t)

5 print(t and f)

6 print(f and f)

Output:

11.5. GPS sensors gpsx and gpsy

Karel has his own GPS device that reveals his GPS coordinates in the maze! The device
comes in the form of two built-in functions gpsx and gpsy which return the current col-
umn and row the robot is in, respectively. Importantly, when Karel is in the left-most
column, his gpsx is zero. When he is in the bottom row, his gpsy is zero.

For illustration, let’s have Karel traverse the entire maze from West to East and display his
gpsx coordinate in each grid square:

Here is the program the robot will use:

1 while not home

2 print(gpsx)

3 go

4 print(gpsx)

The functions gpsx and gpsy return Karel’s
row and column number, respectively.

187

11. BOOLEAN VALUES, VARIABLES, EXPRESSIONS, AND FUNCTIONS

Output:

In the output you can see that the gpsx coordinate of the right-most column (where the
home square is) is 14.

Next, Karel will ascend a snowy mountain, reporting both his gpsx and gpsy coordinates
in every grid square he visits:

188

11.5. GPS SENSORS GPSX AND GPSY

This is the corresponding program:

1 while not home

2 while wall

3 print(gpsx, gpsy)

4 left

5 go

6 right

7 print(gpsx, gpsy)

8 go

9 print(gpsx, gpsy)

Output:

In the output you can see that the gpsy coordinate of the top row of the maze is 11.

189

11. BOOLEAN VALUES, VARIABLES, EXPRESSIONS, AND FUNCTIONS

11.6. Comparison operators ==, !=, <, >, <= and >=

You first saw these operators in Chapter 7, but at that time we did not know yet that they
returned Boolean values True or False. That’s what they do! For illustration, look at
this sample program which displays True:

1 print(1 < 2)

Also, look at another sample program whose output is False:

1 print(1 == 2)

Of course, Boolean values returned by the comparison operators can be stored in Boolean
variables. This program displays True:

1 n = 5

2 b = n == 5

3 print(b)

Using parentheses will improve the readability of the previous program:

1 n = 5

2 b = (n == 5)

3 print(b)

And here is one last, slightly more complex example whose output is False:

1 done = False

2 n = 5

3 m = 9

4 b = (n == 5) and (m < 10) and done

5 print(b)

The result of comparisons such as ==, !=, <, >, <= and >=

is either True or False.

11.7. Boolean functions

You have already seen quite a few functions which returned numbers, as well as one
function which returned text strings (function row in the Morse translator project on page

190

11.7. BOOLEAN FUNCTIONS

173). Boolean values True and False can normally be returned by functions as well. A
function which returns a Boolean value is called Boolean function.

As you know, Karel has a sensor north which he can use to check whether he faces
North. He does not have similar sensors for South, East or West. Therefore, let’s define a
Boolean function south which returns True if Karel faces South and False otherwise:

1 def south

2 repeat 2

3 left

4 n = north

5 repeat 2

6 right

7 return n

When Karel faces South,

the function returns

When he faces East, West or North,

it returns

As another example, let’s write a function border which returns True if Karel stands
next to the border of the maze, and False when he stands in the interior:

1 def border

2 return (gpsx == 0) or (gpsx == 14) or (gpsy == 0) or (gpsy == 11)

191

11. BOOLEAN VALUES, VARIABLES, EXPRESSIONS, AND FUNCTIONS

As a last example, let’s write a Boolean function edible which returns True if Karel
stands above an edible object, and False otherwise:

1 def edible

2 return pumpkin or corn or apple or cherry or candy or lollipop or pie or

orange or banana or potato or coconut or popcorn

In Karel, one can define Boolean functions which return True or False.

11.8. Karel’s sensors are Boolean functions

All Karel’s sensors for obstacles, collectible objects, and containers are Boolean functions.
So are the other sensorse such as north, home and empty. The only exceptions are the
gpsx and gpsy sensors which return integer numbers.

To illustrate this, let’s put Karel one step away from a wall, have him display the value
of the wall sensor, then have him approach the wall, and display the value of the sensor
again:

Here is the corresponding program:

1 print(wall)

2 go

3 print(wall)

Karel’s sensors are Boolean functions which
return either True or False.

Output:

In the following example, Karel faces West. He will make four right turns, displaying the
value of the north sensor before every turn:

192

11.9. THE IF STATEMENT REVISITED

The corresponding program,

1 repeat 4

2 print(north)

3 right

will output

11.9. The if statement revisited

You have already seen the if statement in many different forms. It can be used to avoid
crashing into a wall in front of the robot:

1 if wall

2 left

Or it can be used to make sure that Karel can move forward safely:

1 if not wall

2 go

One can use it to check whether Karel has any objects in his bag:

1 if not empty

2 put

Or, one can use it to detect whether Karel is facing North:

1 if north

2 left

After seeing in the previous section that Karel’s sensors are in fact Boolean functions, you
understand that the if statement expects a Boolean value. That’s how it decides whether

193

11. BOOLEAN VALUES, VARIABLES, EXPRESSIONS, AND FUNCTIONS

its body will be executed or not.

The Boolean values True and False can be used with the if statement directly:

1 if True

2 print("The body of this if statement will be executed always.")

Although this seems to be of little practical application, it can be used to disable a condi-
tion and just let the code run. Or, the False value can be used to disable the body of the
condition so that it never runs:

1 if False

2 print("The body of this if statement will never be executed.")

Especially for longer codes this is less work than having to comment out many lines.

The if statement expects either True or False.

11.10. Using the if statement to display debugging information

Displaying the values of important variables while the program is running is the oldest
and most universal debugging technique. One can define one Boolean variable (named
for example DEBUG) at the beginning of the code, and then use it in if statements through-
out the program to enable debugging output:

1 DEBUG = True # debug mode ON

2

3 ...

4

5 if DEBUG

6 print("Debug info X =", X)

7

8 ...

9

10 if DEBUG

11 print("Debug info n =", n)

12

13 ...

194

11.11. ANOTHER LOOK AT THE WHILE LOOP

When the DEBUG variable is set to False, no debugging information will be displayed:

1 DEBUG = False # debug mode OFF

2

3 ...

4

5 if DEBUG

6 print("Debug info X =", X)

7

8 ...

9

10 if DEBUG

11 print("Debug info n =", n)

12

13 ...

Control prints are the oldest and most universal debugging technique.

11.11. Another look at the while loop

After reading Section 11.9 (page 193) it will come as no surprise that the while statement
expects a Boolean value. When True, the body of the loop is executed. When False,
the loop ends. To illustrate this, let’s have Karel look for a place to cross a cactus field,
displaying the value of the cactus sensor on the way:

This is the corresponding program:

1 left

2 while cactus

3 print(cactus)

4 right

5 go

195

11. BOOLEAN VALUES, VARIABLES, EXPRESSIONS, AND FUNCTIONS

6 left

7 print(cactus)

After the program ends, Karel stands in front of the opening:

And here is the program output:

The while statement expects either True or False.

11.12. Infinite loop while True

By typing while True one can create an infinite loop. Infinite loops are used in Python
and other programming languages, for instance to wait for user input or some other type
of event, to simplify the code when the condition behind the keyword while is too com-
plex, or to emulate the do-while loop.

We can illustrate the process of waiting for an event by tossing dice. Karel has a func-
tion randint(m, n) which returns a random integer between m and n (including m and
n). So, calling randint(1, 6) is the same as tossing a die. Imagine that Karel is playing
a game and must toss a dice until he gets a six.

This can be done using the regular while loop. But the code is cumbersome because
the line with the randint function, as well as the line that displays the value, must be
there twice:

1 # Karel must toss dice until he gets 6:

2 def game

196

11.12. INFINITE LOOP WHILE TRUE

3 n = randint(1, 6)

4 while n != 6

5 print(n)

6 n = randint(1, 6)

7 print(n)

8 return

9

10 # Main program:

11 game

Here is an alternative code which uses an infinite loop while True to emulate the do-while
loop. It only needs to use the function randint and the print statement once:

1 # Karel must toss dice until he gets 6:

2 def game

3 while True

4 n = randint(1, 6)

5 print(n)

6 if n == 6 # event occurred, exit loop

7 return

8

9 # Main program:

10 game

Sample output:

More about randomness and probability will be said in Chapter 12. There we will even
show you that randomness can be used to solve difficult tasks which cannot be solved
deterministically.

197

11. BOOLEAN VALUES, VARIABLES, EXPRESSIONS, AND FUNCTIONS

11.13. Review questions

Friendly reminder - for every question either none, one, or several answers may be correct.

QUESTION 11.1. Who was George Boole?
A Australian musician who composed the song "True or False".
B Host of the movie show "Truth or Consequences".
C Russian programmer who created the video game "True or False"
D English mathematician who studied logic.

QUESTION 11.2. What are the two values used in Boolean algebra?
A Yes and No
B True and False
C True and Untrue
D Truth and Lie

QUESTION 11.3. A is True, B is False. What is A and B?
A True

B False

QUESTION 11.4. A is True, B is False. What is A or B?
A True

B False

QUESTION 11.5. A is True, B is False. What is (not A) and B?
A True

B False

QUESTION 11.6. A is True, B is False. What is (not A) or (not B)?
A True

B False

QUESTION 11.7. a is 1, b is 2. What will the code print(a == b) display?
A True

B False

QUESTION 11.8. a is 4, b is 0. What will the code print(a != b) display?
A True

B False

QUESTION 11.9. Karel is in the right-most column of the maze. What will be the output of the
code print(gpsx)?

198

11.13. REVIEW QUESTIONS

A 0
B 1
C 11
D 14

QUESTION 11.10. Karel is in the left-most column of the maze. What will be the output of the
code print(gpsx)?

A 0
B 1
C 11
D 14

QUESTION 11.11. Karel is in the second row from the top of the maze. What will be the output
of the code print(gpsy)?

A 9
B 10
C 11
D 12

QUESTION 11.12. Karel is in the third row from the bottom of the maze. What will be the
output of the code print(gpsy)?

A 0
B 1
C 2
D 3

QUESTION 11.13. What will the code print(north) display?
A The word north.
B It will generate an error message.
C It will display True if Karel faces North.
D It will display False if Karel does not face North.

QUESTION 11.14. What will the code print(home) display?
A The word home.
B It will generate an error message.
C It will display True if Karel is at his home square.
D It will display False if Karel is away from his home square.

199

12. Randomness and Probability

In this chapter you will learn:
• Why is randomness useful in computing.
• How to generate random integers using the function randint.
• How to use the function randint to simulate rolling dice.
• How to calculate the minimum and maximum of a given set of numbers.
• How to generate random Booleans using the function rand.
• How to use the function rand to simulate coin toss.
• How to calculate simple probabilities.
• How to use randomness to solve difficult tasks.

12.1. Why is randomness useful in computing

Random numbers are used for many applications starting with gambling and creating un-
predictable results in computer games. But one of the major applications of randomness
is in cryptography. Cryptography is used to secure data for safe transfer via Internet, to
secure data storage, and other tasks. Creating a reliable data encryption requires numbers
that nobody can guess. Think about it - if a deterministic (non-random) algorithm was
used to encrypt your data, then at least the author of the algorithm would always be able
to break it, read your emails, enter into your bank account, or steal your identity.

Randomness is also very important for scientific and engineering simulations. For ex-
ample, imagine that an engineer computes the strength of a bridge. He or she knows that
all the physical properties of the underlying materials such as the quality of the concrete
and of the steel come with some amount of uncertainty. Therefore, many computations
with varying parameters must be done to ensure that this uncertainty is taken into ac-
count. These methods are called Monte Carlo Methods.

Generating random numbers and using randomness
is an important part of computing.

200

12.2. GENERATING RANDOM INTEGERS

12.2. Generating random integers

Karel can generate random integers using the function randint which was already men-
tioned in Section 11.12 (page 196). In summary, calling randint(m, n) returns a ran-
dom integer between m and n (including m and n). Calling the function with just one
argument as in randint(n) is the same as calling randint(1, n). Let’s see some ex-
amples.

First, let’s use a repeat loop to generate and display 10 random integers between -1
and 1:

1 repeat 10

2 print(randint(-1, 1))

Output:

The following program generates 10 random integers between 1 and 100:

1 repeat 10

2 print(randint(100))

Output:

201

12. RANDOMNESS AND PROBABILITY

12.3. Karel is rolling a die

When rolling a die, one obtains a random integer between 1 and 6. The same can be done
by calling randint(1, 6) or just randint(6). Today, Karel is curious how many at-
tempts it will take him to throw a six. Here is the corresponding program:

1 n = 0

2 die = -1

3 while die != 6

4 die = randint(6)

5 print(die)

6 inc(n)

7 print("Attempts needed:", n)

Output:

Wow, that was quick! Beginner’s luck, probably. Let’s try this one more time!

202

12.4. PLACING OBJECTS AT RANDOM LOCATIONS

12.4. Placing objects at random locations

Karel stands in the Southwest corner of the maze, facing East:

He carries one light bulb in his backpack, and his task is to place it at a random location
in the maze. The maze is 15 squares wide and 12 squares tall. Here is a program which
will do it:

1 x = randint(0, 14) # number of steps to make in the East direction

2 y = randint(0, 11) # number of steps to make in the North direction

3 repeat x

4 go

5 left

6 repeat y

7 go

8 put

Let’s execute the program two times. Keep in mind that the light bulb will not be visible
because it will be beneath Karel at the end:

203

12. RANDOMNESS AND PROBABILITY

Karel’s final positions after executing the last program two times.

204

12.5. BUILDING A RANDOM SKYLINE

12.5. Building a random skyline

Today, Karel has 60 light bulbs in his bag, and his task is to use them to build a skyline.

Karel’s new task is to build a skyline.

The skyline will consists of 10 columns of bulbs of random heights between one and six,
such as this one:

Random skyline.

This is the corresponding program:

1 repeat 10

2 # Generate a random integer between 1 and 6:

3 n = randint(1, 6)

4 # Build one column:

5 left

6 repeat n

7 put

205

12. RANDOMNESS AND PROBABILITY

8 go

9 # Turn around:

10 right

11 right

12 # Return back to the bottom:

13 while not wall

14 go

15 # Get ready for the next column:

16 left

17 go

Let’s execute the program once more to show that the robot will create a different skyline:

Executing the program one more time.

12.6. Calculating the maximum

One important task in computer science is to calculate the maximum of a given sequence
of values. Let’s take a look at a sample sequence 3, 4, 2.

As the first step, create a new variable named (for example) maximum, and initialize it
with some value which is less than the lowest value in the sequence:

1 maximum = 0

If you do not know how to safely choose a value which is below all values in the sequence,
it is possible to take any value from the sequence. Usually it is easiest to take the first one:

1 maximum = 3

We will take, for example, the initial value maximum = 0. Here is the algorithm:

206

12.7. MEASURING THE HEIGHT OF A SKYLINE

Step 1:
• The current value of maximum is 0.
• Take the next value in the sequence: m = 3

• Is m greater than maximum? (m is 3, maximum is 0)
• Yes, therefore m is the new maximum: maximum = m

• After this step, the value of maximum is at 3.
Step 2:

• The current value of maximum is 3.
• Take the next value in the sequence: m = 4

• Is m greater than maximum? (m is 4, maximum is 3)
• Yes, therefore m is the new maximum: maximum = m

• After this step, the value of maximum is at 4.
Step 3:

• The current value of maximum is 4.
• Take the next value in the sequence: m = 2

• Is m greater than maximum? (m is 2, maximum is 4)
• No, therefore maximum stays unchanged.
• After this step, the value of maximum is at 4.

There are as many steps as there are values in the sequence. Now let’s apply this algorithm
to measure the height of a random skyline!

12.7. Measuring the height of a skyline

Karel’s next task is to measure the height of a random skyline which is formed by 10
columns of light bulbs. The height of the skyline is the height of the tallest column.

Karel is measuring the height of a random skyline.

207

12. RANDOMNESS AND PROBABILITY

To solve this task, the robot will employ the algorithm from the previous section. We will
initialize maximum with 0, and measure the height m of each column. If m > maximum,
he will update maximum to m. Otherwise he will leave maximum unchanged. Here is
the corresponding program, enhanced with control prints to reveal in more detail what is
happening:

1 # Initialize the maximum with 0:

2 maximum = 0

3 # Loop over all columns:

4 repeat 10

5 # Measure the height of the next column:

6 m = 0

7 left

8 while bulb

9 inc(m)

10 go

11 # Turn around:

12 right

13 right

14 # Return back to the bottom:

15 while not wall

16 go

17 # Get ready for the next column:

18 left

19 go

20 # If m > maximum, update maximum to m:

21 if m > maximum

22 print(m, ">", maximum, "therefore updating maximum to", m)

23 maximum = m

24 else

25 print(m, "<=", maximum, "therefore maximum not updated")

26 # Display maximum at the end:

27 print("Height of the skyline is", maximum)

In every step compare the new value m with the current maximum.
If m is greater than the maximum, increase the maximum to m.

For the skyline shown above, the program will produce the following output:

208

12.8. MEASURING THE HEIGHT OF A BUILDING

12.8. Measuring the height of a building

Today Karel needs to measure the height of an unknown building. The building is formed
by columns of crates.

Karel is measuring the height of a building.

This task is different from the previous one because Karel cannot go inside the building
(crates are obstacles). Instead, he will use the Second Maze Algorithm (right-handed ver-
sion) to climb on the crates. He will initialize maximum with 0. After each step along the
crates he will measure his gpsy coordinate m. Note that gpsy is the height of the column
below Karel. If m is greater than maximum, then he will update maximum with m. This is
the corresponding program:

1 maximum = 0

2 # Use the Second Maze Algorithm:

209

12. RANDOMNESS AND PROBABILITY

3 while not home

4 right

5 while wall or crate

6 left

7 go

8 m = gpsy

9 if m > maximum

10 print(m, ">", maximum, "therefore updating maximum to", m)

11 maximum = m

12 else

13 print(m, "<=", maximum, "therefore maximum not updated")

14 print("Height of the building is", maximum)

And here is the output:

210

12.9. CALCULATING THE MINIMUM

12.9. Calculating the minimum

Calculating the minimum of a sequence of numbers is another important task in computer
science. In Section 12.6 (page 206) you learned how to calculate the maximum. Calculating
the minimum is almost the same, with two differences:

• The initial value of minimum must be greater to or equal than any value in the
sequence. Alternatively, one can take the first value of the sequence.
• The value of minimum will be updated if the new value m is less than minimum.

Let us illustrate the algorithm on a sample sequence 7, 9, 5. We will initialize the value of
minimum with 10:

Step 1:
• The current value of minimum is 10.
• Take the next value in the sequence: m = 7

• Is m less than minimum? (m is 7, minimum is 10)
• Yes, therefore m is the new minimum: minimum = m

• After this step, the value of minimum is at 7.
Step 2:

• The current value of minimum is 7.
• Take the next value in the sequence: m = 9

• Is m less than minimum? (m is 9, minimum is 7)
• No, therefore minimum stays unchanged.
• After this step, the value of minimum is at 7.

Step 3:
• The current value of minimum is 7.
• Take the next value in the sequence: m = 5

• Is m less than minimum? (m is 5, minimum is 7)
• Yes, therefore m is the new minimum: minimum = m

• After this step, the value of minimum is at 5.

There will be as many steps as there are values in the sequence. Now let’s apply this
algorithm to measure the clearance of an unknown cave!

In every step compare the new value m with the current minimum.
If m is less than the minimum, decrease the minimum to m.

211

12. RANDOMNESS AND PROBABILITY

12.10. Measuring the clearance of a cave

Today, Karel is exploring a cave. In order to know whether all his equipment will pass
through it, he wants to first measure the clearance (minimum height between the floor
and the ceiling).

Karel is measuring the clearance of a cave.

He will use the algorithm from the previous section. Since the maximum height of the
maze is 12 grid squares, a good initial value for minimum is 12:

1 minimum = 12

2 while not home

3 # Measure the height of the current column:

4 m = 1

5 left

6 while not wall

7 inc(m)

8 go

9 # Turn around

10 right

11 right

12 # Get back down:

13 while not wall

14 go

15 # Get ready for the next column:

16 left

17 go

18 # Update the minimum if M < minimum:

212

12.11. GENERATING RANDOM BOOLEANS

19 if m < minimum

20 print(m, "<", minimum, "therefore updating minimum to", m)

21 minimum = m

22 else

23 print(m, ">=", minimum, "therefore minimum not updated")

24 print("Clearance of the cave is", minimum)

Output:

12.11. Generating random Booleans

Karel has a function rand which returns either True or False with a 50 % probability. In
other words, there is the same chance of returning True or False.

For illustration, let’s call the function rand 10 times and display the result:

1 repeat 10

2 print(rand)

Output:

213

12. RANDOMNESS AND PROBABILITY

12.12. Karel is tossing a coin

Calling the function rand is the same as tossing a coin. Today Karel does not know
whether he should go to cinema or read a book. The following program which simu-
lates a coin toss will help him decide:

1 heads = rand

2 if heads

3 print("I got heads, so I will go to the cinema.")

4 else

5 print("I got tails, so I will read a book.")

Output:

So, Karel decided to go to the cinema today!

12.13. Calculating probabilities

This is easy. Probability is just the number of favorable outcomes divided by the number of
all possible outcomes. Let’s return to the coin toss for a moment.

What is the probability of getting heads? The number of favorable outcomes is 1, the
number of all possible outcomes is 2. Therefore, the probability of getting heads is 1/2
which is 0.5. It is possible to report probabilities in percent, by multiplying the result by
100. Hence, the probability of getting heads is 50 %.

Probability is the number of favorable outcomes
divided by the number of all possible outcomes.

214

12.13. CALCULATING PROBABILITIES

Now let’s say that we toss the coin twice.

What is the probability of getting heads both times? Well, there are four possible out-
comes: Getting heads in the first toss and the second, getting heads in the first toss and
tails in the second, getting tails in the first toss and heads in the second, and getting tails
both times. But only 1 outcome is favorable - that’s the first one (heads and heads). There-
fore, the probability of getting heads in both cases is 1 / 4 = 0.25, or 25 %.

Next, what is the probability of getting a 6 on a die? There is 1 favorable outcome:

The number of all possible outcomes is 6:

Therefore, the probability of getting a six is 1/6 which is approximately 0.17 or 17 %.

As a last example, let’s roll the dice two times. What is the probability of the sum of the
points being at most three? Well, that’s easy. There are 36 possible outcomes: 1 in the first
roll and 1 in the second, 1 in the first roll and 2 in the second, ..., 1 in the first roll and 6 in
the second. That’s six. Then 2 in the first roll and 1 in the second, 2 in the first roll and 2
in the second, ..., 2 in the first roll and 6 in the second. That’s another six. There are four
more sets of six, for getting 3, 4, 5, 6 in the first roll. Hence 6 times 6 is 36.

What is the number of favorable outcomes? Well, the sum can never be 1 because in
each roll the minimum is 1. So the minimum score is 1 + 1 = 2. The score of three can
only be obtained as 1 + 2 or 2 + 1. Hence, there are 3 favorable outcomes. In summary,
the probablity of getting a score of at most three in a double roll is 3 / 36 = 1 / 12. This is
approximately 0.08 or 8 %.

215

12. RANDOMNESS AND PROBABILITY

12.14. Probability of events vs. their frequency

The probability of an event only is an approximate indicator for the frequency of that event.
For example, the probability of getting heads when tossing a coin is 50 %. But this does not
mean that one gets heads exactly one time when tossing the coin twice. Let’s get Karel’s
help to explain this in more detail.

Today, Karel has many ribbons in his bag and he wants to split them into two parts.
He will be tossing a coin to do that. When he gets heads (True), he will place a ribbon on
the left. When he gets tails (False), he will place a ribbon on the right.

Karel wants to split the contents of his bag into two parts.

He will use the following program, starting with 20 ribbons:

1 repeat 20

2 if rand

3 left

4 go

5 go

6 put

7 right

8 right

9 go

10 go

11 left

12 else

13 right

14 go

15 go

16 put

17 left

18 left

19 go

20 go

21 right

Will he get 10 on the left and 10 on the right?

216

12.14. PROBABILITY OF EVENTS VS. THEIR FREQUENCY

And here is the result - 12 ribbons on the left and 8 on the right!

Let’s do this again, now with 100 ribbons (the number of repetitions on line 1 will be
changed to 100). When the program finishes, there are 44 ribbons on the left and 56 on the
right:

And one last time, let’s do the same with 500 ribbons. The result is - 238 ribbons on the
left and 262 on the right:

You can observe one very interesting thing here. If the exact half is the perfect outcome,
then the first time the result was 2 ribbons off (12 instead of 10), the second time the result
was 6 ribbons off (44 instead of 50), and the last time the result was 12 ribbons off (238
instead of 250). That number seems to be growing. But to be fair, one has to make it
proportional to the number of events - which means to divide it by the number of coin
tosses. Hence, in the first case we obtain 2 / 20 = 0.1, in the second case 6 / 100 = 0.06, and
in the third case 12 / 500 = 0.024.

This number is the relative discrepancy between the frequency of the event and its pre-
dicted probability. As you can see, the value steadily decreases from 0.1 to 0.06 to 0.024.
In other words, the relative frequency of the event is getting closer to its predicted proba-
bility. In mathematics, this is called the Law of Large Numbers (LLN). If you are interested,
you can find more about it on Wikipedia.

The Law of Large Numbers states that with an increasing number of events,
the relative frequency will be getting closer to the predicted probability.

217

12. RANDOMNESS AND PROBABILITY

12.15. Karel and random walks

The Boolean function rand allows us to do very interesting things. Such as - we can let
Karel make random walks in the maze! What does it mean? Instead of just letting him
make one step forward, we can let him make the step forward with probability 50 %. The
other 50 % we can split between turning left and turning right. In other words, he will
turn left with probability 25 % or right with probability 25 %. This is the corresponding
program (the number of steps can be changed as needed):

1 repeat 100 # make 100 steps

2 if rand # go straight with probability 50%

3 if not wall

4 go

5 else # the else branch is executed with probability 50%

6 if rand # turn left with probability 25%

7 left

8 else # turn right with probability 25%

9 right

As you can see, we also added a check for a wall on line 3 - without it, the robot would
crash into a wall in no time. Here is the maze where we will try this program out:

Karel’s initial position.

218

12.16. USING RANDOMNESS TO SOLVE DIFFICULT TASKS

And here you can see where Karel went when the program was executed:

The trace of Karel’s random walk.

Notice a few "dead ends". They occur when Karel turns twice in a row and goes back.

12.16. Using randomness to solve difficult tasks

Some tasks are very difficult to solve using deterministic (non-random) algorithms.

Karel needs to collect two rugs at unknown positions.

219

12. RANDOMNESS AND PROBABILITY

This maze is not suitable for the maze algorithms we know. The First Maze Algorithm
fails to find the rugs (green line) and so does the Second Maze Algorithm (red line).

Both the First and Second Maze Algorithms fail.

Both these algorithms actually get into an infinite loop. One possible solution is to let
Karel walk randomly in the maze until he finds the rugs. Well, for simplicity, let us have
him stop after he finds the first one. Here is the corresponding program:

1 while empty # repeat until you find the first rug

2 if rand # go straight with probability 50%

3 if not wall

4 go

5 else # the else branch is executed with probability 50%

6 if rand # turn left with probability 25%

7 left

8 else # turn right with probability 25%

9 right

10 if rug # if you find a rug, collect it

11 get

This works. Use the Karel App in NCLab to re-create the maze, and try it yourself!

12.17. Review questions

QUESTION 12.1. Which of the following areas of computing benefit from randomness?
A logic

220

12.17. REVIEW QUESTIONS

B cryptography
C game design
D scientific computing

QUESTION 12.2. What function in Karel is used to generate random integers?
A random

B rint

C randomint

D randint

QUESTION 12.3. What is the equivalent of rolling a die?
A randint(1, 6)

B randint(0, 6)

C randint(1, 7)

D randint

QUESTION 12.4. What is the maximum of the numbers 3, 9, 6, 7, 2?
A 2
B 3
C 7
D 9

QUESTION 12.5. If maximum is the current value of the maximum, and the next value is m,
what condition is used to update maximum?

A if m > maximum

B if m < maximum

QUESTION 12.6. What is the minimum of the numbers 3, 9, 6, 7, 2?
A 2
B 3
C 7
D 9

QUESTION 12.7. If minimum is the current value of the minimum, and the next value is m,
what condition is used to update minimum?

A if m > minimum

B if m < minimum

QUESTION 12.8. When tossing a coin, what is the probability of getting heads?
A 50 %

221

12. RANDOMNESS AND PROBABILITY

B 0.5
C 5.0
D 100 %

QUESTION 12.9. When tossing a coin two times, what is the probability of getting heads both
times?

A 50 %
B 25 %
C 0.5
D 0.25

QUESTION 12.10. When rolling a die, what is the probability of getting a 3?
A 1/6
B 3/6
C 1/2
D 1

QUESTION 12.11. When rolling a die, what is the probability of getting an even number?
A 1/2
B 1/6
C 1/3
D 0

QUESTION 12.12. When rolling a die two times, what is the probability of getting a combined
score of 2?

A 0
B 1/2
C 1/18
D 1/36

QUESTION 12.13. A favorable event has probability 50%, and we do 10 experiments. How
many times will the favorable event occur?

A 5 times
B 4 times
C 6 times
D This is impossible to say.

222

13. Lists

In this chapter you will learn:
• What lists are and why they are useful.
• How to create empty and nonempty lists.
• How to append values to a list.
• How to measure the length of a list.
• How to access list items via their indices.
• How to parse lists via the for loop.
• How to check if a given item is in a list.
• How to remove and return ("pop") items from a list.
• How to add lists and multiply them with integers.
• How to delete items from a list.

As usual, first we will cover the necessary theory and then we will show you some cool
applications of lists at the end of this chapter.

13.1. What are lists and why they are useful

You already know how to create and use numerical, text string and even Boolean vari-
ables. Variables are like containers - every variable can store one value. In contrast to this,
a list is like a cargo train which can store many different values.

A list is like a cargo train.

223

13. LISTS

The values in a list are ordered, so one knows which one is the first and which one is
the last. They can have different types - a list may contain numerical values, text strings,
Booleans, and even other lists. Items can be dynamically added and/or removed at run-
time as needed.

Lists are Karel’s (and Python’s) most powerful data structure. The implementation
of lists in Karel is compatible with Python, although Karel does not provide all the list
functionality offered by Python.

13.2. Creating empty and nonempty lists

Throughout this chapter, you will see that there are strong similarities between lists and
text strings. To begin with, an empty text string txt is created via txt = ” or txt =

"". It is also possible to create a nonempty text string such as msg = ’Hi there!’.

An empty list is created using a pair of empty square brackets:

1 L = []

Do not use parentheses () or curly braces {} as they have a different meaning. You can also
create a non-empty list:

1 S = [2, 3, 5]

A list can contain text strings,

1 W = ['Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday']

Boolean values,

1 B = [True, False, False, True, False, True]

and the types of values in a list can even be mixed:

1 M = [1, 2, 'Emily', 'Jocob', 'True', 'False']

Empty and nonempty lists are created using square brackets.

224

13.3. APPENDING ITEMS TO A LIST

13.3. Appending items to a list

Items can be appended to the end of a (empty or nonempty) list using the list method
append:

1 L = []

2 print("L =", L)

3 L.append(5)

4 print("L =", L)

5 L.append(10)

6 print("L =", L)

Output:

Lists are perfect for storing several values at once. Like today, when Karel needs to re-
member the positions of all the orchids:

He can do it as follows:

1 X = []

2 while not home

3 if orchid

4 X.append(gpsx)

5 go

6 print("Orchids are in columns:", X)

Output:

Items can be appended to the end of a list using the list method append.

225

13. LISTS

13.4. Measuring the length of a list

From Section 9.5 (page 156) you know that len(txt) returns the length of the text string
txt. Similarly, when working with lists, calling len(L) will return the length of the list
L. The length of a list means the number of its items. For illustration, let’s change the last
line of the previous program, and display the length of the list X:

1 X = []

2 while not home

3 if orchid

4 X.append(gpsx)

5 go

6 print("I found", len(X), "orchids.")

Output:

13.5. Accessing list items via their indices

You already know from Section 9.8 (page 157) how to access individual characters in a
text string using their indices. For example, txt[0] is the first character in the text string
txt, txt[1] is the second character, etc. Also, txt[-1] is the last character of the text
string, txt[-2] is the second from the end, and so on.

When working with lists, it is possible to access individual list items exactly in the
same way. For example, X[0] is the first item of the list X, X[1] is its second item, X[-1]
is its last item, etc.

Today, Karel is still counting orchids:

But now he wants to know the position of the first orchid, and the position of the last one
before his home square:

1 X = []

2 while not home

3 if orchid

4 X.append(gpsx)

226

13.6. CREATING A LIST OF LISTS

5 go

6 print("The first orchid was found in column:", X[0])

7 print("The last orchid was found in column: ", X[-1])

Output:

Items in a list can be accessed using indices
in the same way as characters in a text string.

13.6. Creating a list of lists

Karel is still in the jungle counting orchids. But now, there can be multiple of them per
grid square:

He needs to not only remember their positions, but also their numbers. This naturally
leads to a list of pairs of the form "position, number". In fact, each of these pairs can be a
two-item list, and these lists can be stored in a list. Hence one obtains a list of lists. Here
is the code from Section 13.3 (page 225), updated for the current situation:

1 # Count orchids in grid square:

2 def count

3 n = 0

4 while orchid # collect and count them

5 get

6 inc(n)

7 while not empty # put them back

8 put

9 return n

10

11 # Main program:

12 X = []

13 while not home

227

13. LISTS

14 if orchid

15 o = count

16 X.append([gpsx, o])

17 go

18 print("List of [position, number] pairs:")

19 print(X)

Output:

Lists can contain other lists.

13.7. Parsing lists with the for loop

Let’s stay with the previous example for another moment:

The text output was too compact, and it would be good to make it nicer. It should say
something like "I found 2 orchids in column 3, 1 orchid in column 5, ..." etc.

You already know from Section 9.6 (page 156) how to parse text strings one character
at a time. Lists can be parsed one item at a time exactly in the same way. For example,
with the list X from the previous example, the code

1 for x in X

2 print(x)

will display

This is still not very nice, but we are getting closer. Each item x in the list X is a two-item
list containing a position-number pair. Therefore we know that x[0] is the position and

228

13.8. CHECKING IF AN ITEM IS IN A LIST

x[1] the corresponding number. Therefore, a nicer output can be arranged as follows:

1 print("I found:")

2 for x in X

3 print(x[1], "orchids in column", x[0])

This will display

Although there is a minor English imperfection, this is way better than before. If we
wanted to improve line 3, we would have to include one extra condition:

1 print("I found:")

2 for x in X

3 if x[1] == 1

4 print(x[1], "orchid in column", x[0])

5 else

6 print(x[1], "orchids in column", x[0])

Final output:

13.8. Checking if an item is in a list

You already know from Section 9.12 (page 161) that Karel can check for the presence of a
substring in a text string using the keyword in. The same keyword can be used to check
whether an item is present in a list. For illustration, the list X we created in Section 13.3
(page 225) provides information about the column positions of orchids:

229

13. LISTS

Karel can now use the list to ask whether there is an orchid in column number 5:

1 col = 5

2 if col in X

3 print("There is an orchid in column number", col)

4 else

5 print("There is no orchid in column number", col)

Output:

Or, he can ask whether there is an orchid in column number 10:

1 col = 10

2 if col in X

3 print("There is an orchid in column number", col)

4 else

5 print("There is no orchid in column number", col)

Output:

The list of two-item lists X that we created in Section 13.6 (page 227) provides information
about positions of orchids and their numbers:

Karel can use it to ask whether there are two orchids in column number 7:

1 col = 7

2 n = 2

3 if [col, n] in X

4 print("There are", n, "orchids in column number", col)

5 else

6 print("There aren't", n, "orchids in column number", col)

Output:

230

13.9. REMOVING AND RETURNING ("POPPING") ITEMS FROM A LIST

13.9. Removing and returning ("popping") items from a list

At the beginning of this chapter we said that lists can easily be modified at runtime, but so
far we only showed you how to append new items at the end. Karel (and Python) provide
the list method pop which will remove and return items from a list. Let’s look at a sample
list names = [’Ann’, ’Brett’, ’Charles’, ’Dave’, ’Emily’, ’Frank’].

Calling names.pop() will remove and return the last item, ’Frank’:

1 names = ['Ann', 'Brett', 'Charles', 'Dave', 'Emily', 'Frank']

2 print("Before:", names)

3 print("Popping", names.pop())

4 print("After:", names)

Output:

The method pop can also be called with the index of a specific item we want to remove
and return. For example, calling names.pop(0) will remove and return the item ’Ann’

from the list:

1 names = ['Ann', 'Brett', 'Charles', 'Dave', 'Emily']

2 print("Before:", names)

3 print("Popping", names.pop(0))

4 print("After:", names)

Output:

And as a last example, calling names.pop(-2) will remove and return the second item
from the end which is ’Dave’:

1 names = ['Brett', 'Charles', 'Dave', 'Emily']

2 print("Before:", names)

3 print("Popping", names.pop(-2))

4 print("After:", names)

231

13. LISTS

Output:

List items can be removed and returned using the method pop.

13.10. Adding lists

From Section 9.3 (page 155) you know that text strings can be added just as numbers. Lists
can be added in the same way:

1 names = ['Brett', 'Charles', 'Dave', 'Emily']

2 new_names = ['Fred', 'Gillian', 'Harry']

3 print(names + new_names)

Output:

And one can even use the += operator to extend a list with another one:

1 names = ['Brett', 'Charles', 'Dave', 'Emily']

2 new_names = ['Fred', 'Gillian', 'Harry']

3 names += new_names

4 print(names)

Output:

13.11. Multiplying lists with integers

The analogy between lists and text strings goes further. In Section 9.4 (page 155) you have
seen that a text string can be multiplied with a positive integer N, which will copy and
paste its contents N times. The same can be done with lists:

1 morse = ['....', '..']

2 print(morse*4)

232

13.12. DELETING ITEMS FROM A LIST

Output:

And as you would expect, the *= operator works as well:

1 morse = ['....', '..']

2 morse *= 4

3 print(morse)

Output:

Lists can be added and multiplied with positive integers
analogously to text strings.

13.12. Deleting items from a list

Sometimes one just needs to delete an item from a list (and destroy it) because there is
no use for it. This can be done using the keyword del. Typing del L[i] will delete
and destroy the item with index i from the list L. Let’s illustrate this on another Morse
example:

1 morse = ['.--', '---', '.-.', '.-..', '-..']

2 print("Before:", morse)

3 print("Removing letter L.")

4 del morse[3]

5 print("After:", morse)

Output:

Typing del L[i] will delete and destroy the item
with index i from the list L.

233

13. LISTS

13.13. Gardener

Let’s show a task which would be difficult to solve without using a list. Karel is working
in his garden. In front of him is a flower bed with tulips:

Karel is gardening.

The robot does not know the length of the flower bed, or the number or positions of the
tulips. His task is to create an identical flower bed on the other side of the wall:

He has enough tulips in his bag to do it.
The best way to solve this task is to follow the wall until its end, and store the column

positions of all the tulips in a list T. Then, on the other side of the wall, Karel will walk
towards his home square. In each grid square he will check whether his gpsx coordinate
is in the list T. If the value is found, he will place a tulip. Here is the corresponding code:

1 T = [] # to store the column positions of the tupils

2 right

3 while wall # follow the wall to its end

4 left

5 go

6 right

7 if tulip # if there's a tulip, add gpsx to the list T

8 T.append(gpsx)

9 go # go over to the other side of the wall

10 right

11 while not home # walk home

12 go

13 if gpsx in T # if the gpsx value is in T, place an orchid

14 put

234

13.14. EXPEDITION ANTARCTICA

13.14. Expedition Antarctica

The following task is interesting not only because it would be very difficult to solve with-
out using a list, but also because it involves a discussion of different ways to store data in
the list.

Karel is part of an expedition to Antarctica, and his task is to find a way through ice
and snow. He should record his path in such a way that later he can draw a map.

Karel is in Antarctica.

Clearly, the robot can use the First Maze Algorithm to pass through the maze. He will
need to store the information about his path in a list (say P). But this can be done in many
different ways.

Option #1: For every step he makes, Karel can add 0 to the list P. When he needs to
turn right, he can add True. When he needs to turn left, he can add False.

Option #2: At every turn Karel can add to the list P a triplet [gpsx, gpsy, R]where
R is True if the path goes to the right and False otherwise.

Option #3: Karel can count his steps and store their number in a variable N. At every
turn he can add to the list P a pair [N, R] where R is True if the path goes to the right
and False otherwise. He would reset N back to 0 after every turn.

235

13. LISTS

Let’s evaluate these three options: The sample path shown above involves 77 steps and
20 turns. So, option #1 would produce a list of length 77 + 20 = 97. Option #2 would add
three values at every turn, hence the resulting list would have length 3 · 20 = 60. And
finally, option #3 would add two values at every turn, yielding a list of length 2 · 20 = 40.
Since option #3 is most memory-efficient, we will implement it.

The following program will do it. Make sure to read the comments in the code:

1 P = [] # to store path information

2 N = 0 # counter of steps

3 while not home

4 go

5 inc(N) # increase counter of steps

6 if wall # First Maze Algorithm

7 right

8 if wall

9 left

10 left

11 P.append([N, False]) # path goes left

12 else

13 P.append([N, True]) # path goes right

14 N = 0 # reset counter of steps

15 print(P)

Output:

Awesome - first part done! The second part of the task is to use this list to draw a map of
the path. The program is very simple. Karel will draw the path by placing beepers he has
in his bag:

1 # Path information:

2 P = [[2, True], [2, True], [1, False], [2, False], [3, False], [4, True],

[6, True], [2, True], [4, False], [2, False], [4, True], [6, True], [2,

True], [4, False], [7, False], [2, False], [5, True], [2, True], [5,

False], [2, False], [10, True]]

3

236

13.14. EXPEDITION ANTARCTICA

4 # Draw the path by placing beepers!

5 for p in P # pass through all pairs in P

6 repeat p[0] # make p[0] steps forward

7 put # place a beeper before each step

8 go

9 if p[1] # if p[1] is True, turn right

10 right

11 else # otherwise turn left

12 left

Let’s start from a clean sheet:

Karel is ready to draw the path.

Always try to find different ways to solve the given task.
Then compare them, and choose the best one.

237

13. LISTS

And here is Karel’s drawing after the program finishes:

13.15. Copycat

Karel’s next task is to copy a random pattern from the left box and paste it in the box on
the right:

238

13.15. COPYCAT

Hence the robot needs to visit all grid squares in the left box, learn where the pumpkins
are, then visit all grid squares in the box on the right again, and place pumpkins at the
corresponding positions.

Rather than writing a complicated code for the robot to visit all grid squares in the first
box, let’s use the method from the previous section. Here is a path through the first box,
stored in a list named H:

1 # Path to visit all grid squares in the box:

2 H = [[7, True], [6, True], [1, True], [5, False], [1, False], [5, True],

[1, True], [5, False], [1, False], [5, True], [1, True], [5, False], [1,

False], [5, True], [1, False]]

We will use this list and the previous program to visit all grid squares in the left box, and
then also in the box on the right. This time we will use a Boolean list B to store the pattern.
Initially, this list will be empty. After each step, Karel will append to it True if he found a
pumpkin, and False if he did not. In the box on the right, the list B will be used to place
pumpkins at the corresponding positions. Here is the complete code:

1 # Path to visit all grid squares in the box:

2 H = [[7, True], [6, True], [1, True], [5, False], [1, False], [5, True],

[1, True], [5, False], [1, False], [5, True], [1, True], [5, False], [1,

False], [5, True], [1, False]]

3

4 # Go through the box on the left:

5 B = [] # create an empty Boolean list

6 for p in H # pass through all pairs in the list H

7 repeat p[0] # make p[0] steps forward

8 go

9 B.append(pumpkin) # if pumpkin, append True, else append False

10 if p[1] # if p[1] is True, turn right

11 right

12 else # otherwise turn left

13 left

14

15 # Move to the second box:

16 go

17 go

18 left

19

239

13. LISTS

20 # Go through the box on the right:

21 for p in H # pass through all pairs in the list H

22 repeat p[0] # make p[0] steps forward

23 go

24 if B.pop(0) # get the first item from the list B

25 put

26 if p[1] # if p[1] is True, turn right

27 right

28 else # otherwise turn left

29 left

When the program finishes, Karel has reproduced the pattern from the left box:

To make sure that the program works for other patterns as well, let’s try at least one more:

240

13.16. REVIEW QUESTIONS

And here is the corresponding output:

13.16. Review questions

Friendly reminder - for every question either none, one, or several answers may be correct.

QUESTION 13.1. Check all true statements about variables and lists!
A Variables can store numerical values, lists cannot.
B Lists can store Boolean values, variables cannot.
C A variable can only store a single value.
D A list can store multiple values.

QUESTION 13.2. How can one create a list named L containing the letters ’A’, ’B’ and
’C’?

A L = (’A’, ’B’, ’C’)

B L = [’A’, ’B’, ’C’]

C L = {’A’, ’B’, ’C’}

D L = "’A’ ’B’ ’C’"

QUESTION 13.3. How can the value of a variable v be appended to a list V ?
A V.append(v)

B V.add(v)

C V.pop(v)

D V += v

QUESTION 13.4. How can one measure the length of a list X ?

241

13. LISTS

A length(X)

B length X

C len(X)

D len X

QUESTION 13.5. In the list [6, 4, 8, 9, 2, 3], what is the index of the value 2 ?
A 4
B 5
C -1
D -2

QUESTION 13.6. In the list [[1, 2], [3, 4], [5, 6]], what is the index of the value
5 ?

A [3][1]

B [3][0]

C [2][0]

D [2][1]

QUESTION 13.7. There is a list L = [2, 3, 5, 7, 11, 13, 17, 19]. What will
the list become after executing n = L.pop(5) ?

A [2, 3, 7, 11, 13, 17, 19]

B [2, 3, 5, 7, 11, 17, 19]

C [2, 3, 5, 7, 11, 13, 19]

D [13, 17, 19]

QUESTION 13.8. There are lists L1 = [1, 1, 1] and L2 = [2, 2, 2]. What will be
the result of L1 + L2 ?

A [3, 3, 3]

B [1, 1, 1, [2, 2, 2]]

C [1, 1, 1, 2, 2, 2]

D An error message

QUESTION 13.9. There is a list C = [’a’, ’b’, ’c’, ’d’]. What will be the result
of C*2 ?

A [’aa’, ’bb’, ’cc’, ’dd’]

B [’a’, ’b’, ’c’, ’d’, ’a’, ’b’, ’c’, ’d’]

C [’a’, ’a’, ’b’, ’b’, ’c’, ’c’, ’d’, ’d’]

D An error message

242

14. Recursion

In this chapter you will learn:
• What recursion is and why it is useful.
• How to recognize whether or not a task is suitable for recursion.
• How to implement recursion correctly.
• What can happen if recursion is not done right.
• How to use variables, lists, and functions in recursion.
• About mutually recursive commands and functions.

At the end, we will show you examples of tasks which can easily be solved with recursion,
but which would be extremely difficult to tackle without it.

14.1. What is recursion and why is it useful

Recursion is a fundamental concept of computational thinking.

"To iterate is human, to recurse divine." (L. Peter Deutsch)

This classical programming quote is 100% true - recursion is a beautiful and powerful tool.
On the other hand, it is important to know that as any other tool, it is suitable for some
tasks but not for all.

When you try to learn about recursion, you will come across statements like this:

"Programming technique where a function can call itself..."

or

"The process in which a function calls itself..."

Well, this is not exactly true, as we will see in Section 14.8 (page 252). But more im-
portantly, recursion is much more. It can be found in many areas ranging from art and
linguistics to mathematics and computer science.

243

14. RECURSION

Recursion is a repetitive process which takes an object,
event or activity and makes it "the same but smaller".

Let’s see some examples, starting with the famous Russian dolls:

Russian dolls - an example of recursion in art.

Snowflakes are an example of recursion in nature:

A snowflake.

Fractals are mathematical objects which exhibit recursion. The following is an example of
the Julia fractal:

244

14.2. WHICH TASKS ARE SUITABLE FOR RECURSION?

Julia fractal.

In the following section we will give examples of tasks which are suitable for recursion.

14.2. Which tasks are suitable for recursion?

All recursive tasks have one thing in common: Part of the task can be solved by some
method. The rest is then a smaller copy of the same task. So, one can solve part of it using
the same method as before. The rest will then be a smaller copy of the same task. So, one
can solve part of it using the same method... etc.

Example 1: Eating your lunch is a recursive task

245

14. RECURSION

Imagine that your "task" is to eat your food. If you don’t like chili, picture your favorite
food now. How do you eat it? Well, first you check: Is there any more left? If so, you eat
a bite. Then there is a bit less food to eat. So you check: Is there any more left? If so, you
eat a bite. Then there is a bit less food to eat...

Example 2: Cleaning up is a recursive task

Your next task is to put all the Lego pieces back in the box. First you check the floor: Are
there some pieces still lying around? If so, collect a few and put them in the box. Then
there are fewer loose pieces on the floor. So you check: Are there some pieces still lying
around? If so, collect a few and put them in the box. Then there are fewer loose pieces on
the floor...

Example 3: Reading a book is a recursive task

Our third and last example is about reading a book. Your progress will be measured by
the number of unread pages. First you check: Are there any more pages left to read? If so,
read a few pages from where you left off. After that, fewer pages remain, so your task got
smaller. So you check: Are there any more pages left to read? If so, read a few pages from
where you left off. After that, fewer pages remain, so your task got smaller...

246

14.3. COLLECTING SHIELDS

14.3. Collecting shields

Today, Karel’s task is to collect all shields and enter the home square:

Collect all shields!

The recursive algorithm for Karel to do this is as follows:

• If you are not home:
– If there is a shield beneath you, collect it.
– Make one step forward.

• After this, the task is the same, just smaller: Collect all shields!

Notice the condition "if you are not home" at the beginning. This condition is very impor-
tant in recursion. It is called the stopping condition. When one forgets it, recursion instantly
turns into an infinite loop.

After one step, Karel’s task is the same: Collect all shields!

And here is the corresponding code. Notice that after collecting one shield and moving
one step forward, the command walk calls itself on line 9. Also, notice that the recursive
call on line 9 is made from the inside of a stopping condition if not home. This means
that when Karel arrives at home, the command walk is not called anymore and the recur-
sion ends:

1 # Recursive command:

2 def walk

3 if shield

4 get

5 go

6 # Stopping condition:

7 if not home

8 print("Recursive call...")

247

14. RECURSION

9 walk

10 print("Recursive call ended.")

11 return

12

13 # Main program:

14 print("Calling 'walk' from the main program...")

15 walk

16 print("Call from the main program ended.")

The recursive call always must be made from the body of a stopping condition.
If one forgets this, the recursion will instantly turn into an infinite loop.

14.4. Under the hood

The last program contained some control outputs to help us understand the program flow
better. Let’s have a look at them:

The first line corresponds to calling walk on line 15 in the main program. The second line
corresponds to executing walk on line 9 of its own body. At this point, a new copy of the
command walk is created in the computer memory and called. The original command
walk which was called on line 15 is put on hold.

To make the explanation simpler, let’s name the new copy walk2 (although in reality
the names do not change like this). The command walk2 executes walk on line 9 again.
This creates a new copy of the command walk which we can name walk3. The new copy
walk3 is called and the copy walk2 is put on hold.

This process continues and other three copies walk4, walk5 and walk6 are created
and called. Finally, in walk6, Karel enters the home square and therefore the stopping

248

14.5. FORGETTING THE STOPPING CONDITION

condition on line 7 is not satisfied. Therefore, the program goes directly to line 11 and
walk6 ends.

At this moment, the control is returned to walk5 where the program continues on line
10 and displays for the first time the message Recursive call ended. The program
then goes to line 11 and walk5 ends. Then the control is returned to walk4 where the
program continues on line 10, and displays for the second time the message Recursive
call ended.

This process continues until walk2 ends and the control is returned to the original
command walk. When this command ends, control is returned to the main program, and
the last message is displayed: Call from the main program ended. Here is the se-
quence of the recursive calls in graphic form:

The sequence of recursive calls.

A recursive call creates and calls a new copy of the command (or function).
The original command is then put on hold until the call to the copy ends.

14.5. Forgetting the stopping condition

Forgetting to place the recursive call in the body of a stopping condition leads to an infinite
loop - the recursion never stops. Let’s illustrate this by removing the stopping condition
from the previous program:

249

14. RECURSION

1 # Recursive command:

2 def walk

3 if shield

4 get

5 go

6 print("Recursive call...")

7 walk

8 print("Recursive call ended.")

9 return

10

11 # Main program:

12 print("Calling 'walk' from the main program...")

13 walk

14 print("Call from the main program ended.")

Here is the corresponding output:

The infinite recursion was actually interrupted when Karel stepped out of the maze and
the program crashed:

Infinite recursion may be interrupted with
an error which causes the program to crash.

250

14.7. MUSEUM HEIST

14.6. Moving shields to boxes

Today Karel needs to use recursion to put the shields in the boxes, instead of just collect-
ing them:

Move the shields to the boxes!

The program is similar to the previous one. We only removed the control outputs and
added a new condition on lines 5 and 6:

1 # Recursive command:

2 def walk

3 if shield

4 get

5 if box

6 put

7 go

8 # Stopping condition:

9 if not home

10 walk

11 return

12

13 # Main program:

14 walk

Again, notice that the recursive call on line 10 is made from the body of a stopping con-
dition if not home which guarantees that the recursion stops when the robot gets to his
home square.

14.7. Museum heist

Someone stole from the museum historical items of immense value, and left some shields
lying scattered on the floor. Karel needs to sweep the floor for any traces, collect the
shields, and bring them to the home square:

251

14. RECURSION

Sweep the floor and collect all shields!

Here is the corresponding program. You will recognize the First Maze Algorithm on lines
5 - 10:

1 # Recursive command:

2 def sweep

3 if shield

4 get

5 if wall

6 left

7 if wall

8 right

9 right

10 go

11 # Stopping condition:

12 if not home

13 sweep

14 return

15

16 # Main program:

17 sweep

14.8. Mutually recursive commands

In recursion, a command or function does not always have to call itself. Recursion also
occurs when command A calls command B, then command B calls command A, then

252

14.9. USING VARIABLES AND FUNCTIONS IN RECURSION

command A calls command B, etc. Let’s illustrate this on the previous example, where we
decompose the recursive command sweep into a pair or mutually recursive commands
move and collect:

1 # Recursive command:

2 def move

3 if wall

4 left

5 if wall

6 right

7 right

8 go

9 # Stopping condition:

10 if not home

11 collect

12 return

13

14 # Recursive command:

15 def collect

16 if shield

17 get

18 # Stopping condition:

19 if not home

20 move

21 return

22

23

24 # Main program:

25 move

Importantly, notice that in both commands, the recursive call occurs in a stopping condi-
tion.

14.9. Using variables and functions in recursion

So far we have discussed recursive commands which did not involve variables. Now we
will show you that variables and functions can be used in recursion as well.

253

14. RECURSION

For illustration, let’s write a recursive function sum(n) to add the numbers n, n-1, n-2,
..., 1 and return the result. The idea is that if n > 1 then the function will call s =

sum(n-1) and return s + n. If n == 1 then the function will return 1:

1 # Recursive function to add numbers n, n-1, ..., 1:

2 def sum(n)

3 # Stopping condition:

4 if n > 1

5 # Calculate the rest of the sum:

6 print("Calling 'sum' from 'sum' with argument", n-1)

7 s = sum(n-1)

8 # Add n to the rest of the sum:

9 print("Adding", n)

10 inc(s, n)

11 # Return the sum:

12 return s

13 # Else branch of the stopping condition:

14 else

15 # Return 1:

16 print("Recursion ended, returning 1")

17 return 1

18

19 # Print result for a sample value 10:

20 print("Calling 'sum' from main program with argument 10")

21 num = sum(10)

22 print("Final result =", num)

The recursive call on line 7 evaluates the sum of the numbers n-1, n-2, ..., 1 to which
is then added n on line 10, and the result is then returned on line 12.

Notice that the stopping condition has the form if n > 1 which ensures that the recur-
sion stops when n reaches 1. The function contains some control prints to help us better
understand the program flow. This is the output which shows that everything went as
expected:

254

14.10. PARSING LISTS USING RECURSION

14.10. Parsing lists using recursion

Today, Karel is given a list of text strings. His task is to parse the list without using a loop,
and display all its items. This is very easy indeed:

1 # Sample list:

2 days = ['Mon', 'Tue', 'Wed', 'Thu', 'Fri', 'Sat', 'Sun']

3

4 # Recursive function to parse a list:

5 def parselist(L)

6 if len(L) != 0

7 print(L[0])

8 parselist(L[1:])

9 return

10

11 # Main program:

12 parselist(days)

Output:

255

14. RECURSION

That was too simple, so here is one more task: Write a recursive function add(L) to add
all items in a list L! But you already understand recursion really well, so this can’t throw
you off balance:

1 # Sample list:

2 nums = [2, 4, 6, 8, 10, 12, 14, 16, 18, 20]

3

4 # Recursive function to add all items in a list:

5 def add(L)

6 if len(L) > 0

7 s = add(L[1:])

8 return s + L[0]

9 return 0

10

11 # Main program:

12 result = add(nums)

13 print("The result is:", result)

The result is 110. Add the numbers yourself to verify it’s true!

14.11. Recursion at its best

All the examples that we have presented so far were easily solvable without recursion as
well. So, you might get an impression that all tasks which can be solved with recursion can
easily be solved without it. But that would not be true. The problem with demonstrating
the real advantages of recursion is that one needs more difficult tasks for that.

Therefore, we prepared for you three such tasks. All of them can be solved easily with
recursion but they would be much more difficult to tackle without it. You will find them
in Section 15.1 (page 258), Section 15.2 (page 260) and Section 15.3 (page 262).

256

14.12. REVIEW QUESTIONS

14.12. Review questions

Friendly reminder - for every question either none, one, or several answers may be correct.

QUESTION 14.1. In which areas can one encounter recursion?
A Art
B Nature
C Mathematics
D Computer programming

QUESTION 14.2. Which of the following activities can be viewed as recursion?
A Eating your lunch.
B Cleaning your room.
C Reading a book.
D Counting down from 10 to 1.

QUESTION 14.3. What is characteristic for tasks which are suitable for recursion?
A They are repetitive.
B They require variables.
C They require lists.
D They can be reduced to the same task, but smaller in size.

QUESTION 14.4. Where should the recursive call be made?
A At the beginning of the command or function.
B At the end of the command or function.
C From the body of a stopping condition.
D Before a stopping condition.

QUESTION 14.5. What happens if one forgets the stopping condition?
A The program will run forever or crash.
B Recursion will turn into an infinite loop.
C The recursive call will not be executed.
D The recursive call will be only made once.

QUESTION 14.6. What does it mean that two commands A and B and mutually recursive?
A A is recursive and B is not.
B B is recursive and A is not.
C A calls B and B calls A.
D A calls itself and B calls itself.

257

15. Advanced Applications

The objective of this section is to present a few advanced applications of various tech-
niques and algorithms which you have learned so far. We will begin with recursion.

15.1. Flood (recursion)

Karel’s first task is to "flood" the maze with beepers. This means - place a beeper in every
grid square he can access. The layout of the maze is random, but there are no other ob-
stacles besides walls, no containers, and no collectible objects. Notice that the robot is not
able to access all grid squares because some areas in the maze are surrounded with walls:

Karel is going to put beepers in all accessible squares.

This task is perfect for recursion, and in a moment we are going to show you why. But
first a technicality - let’s define a new command back for Karel to back one step:

258

15.1. FLOOD (RECURSION)

1 # Back one step:

2 def back

3 left

4 left

5 go

6 right

7 right

Then we can write the recursive command fill. The idea is as follows: If you stand on a
beeper, the grid square was already "flooded". So do nothing and just return (this is when
the recursion will stop). Otherwise (there is no beeper where you stand), place a beeper.
Then, you will step one by one in the squares on your right, in front of you, and on your
left, and always start a new "flood" from there. Of course you always need to check for a
wall before making a step forward. Amazingly, this is it! Below is the code of the com-
mand fill:

1 # Put a beeper in every accessible square:

2 def fill

3 if beeper

4 return

5 else

6 put

7 right

8 repeat 3

9 if not wall

10 go

11 fill

12 back

13 left

14 right

15 right

16

17 # Main program:

18 fill

Before executing the program, one has to ensure that the robot has enough beepers in his
bag. Since the maze has 15 columns and 12 rows, the best is to give him 12 · 15 = 180

beepers. After the program ends, the maze will look as follows:

259

15. ADVANCED APPLICATIONS

At the end, the maze is "flooded".

15.2. Contraband (recursion)

An ancient story has it that robbers hid gems in this maze.

Sample maze with an unknown number of hidden gems.

260

15.2. CONTRABAND (RECURSION)

If there were any, they would be in unreachable squares. Hence, your task is to calculate
the number of unreachable squares!

One way to do this, is to "flood" the maze as we did in the previous section. When the
robot begins with 12 · 15 = 180 beepers in his bag, and finishes with B beepers, then there
are 180 - B unreachable squares. Here is the corresponding program:

1 # Return one step back:

2 def back

3 left

4 left

5 go

6 right

7 right

8

9 # Put a beeper in every accessible square:

10 def fill

11 if beeper

12 return

13 else

14 put

15 right

16 repeat 3

17 if not wall

18 go

19 fill

20 back

21 left

22 right

23 right

24

25 # Main program:

26 N = 180

27 # Place beepers into all accessible squares:

28 fill

29 # How many beepers were you not able to place?

30 while not empty

31 put

32 U = -1

33 while beeper

261

15. ADVANCED APPLICATIONS

34 get

35 inc(U)

36 print("There are", U, "hidden gems in this maze!")

15.3. Traversing binary trees (recursion)

Binary trees are an important data structure in computer science, and traversing them is
one of the fundamental tasks. In Karel, binary trees can be represented by trees of apples:

Sample binary tree.

Why do we use the word "binary"? The reason is that at any position in the tree, there can
be at most two branches - to the left and/or to the right.

The idea of the recursive algorithm is that at each position in the tree there can be at
most two branches, which themselves are binary trees. Hence, Karel first needs to check
for an apple beneath him. If there is no apple, the recursion stops. Otherwise (there is an
apple beneath him), he needs to check whether a tree starts in the Northwest square. If
so, he needs to traverse it and return to his initial position. Then he also needs to check if
a tree starts in the Northeast square. If so, he needs to traverse it and return to his initial
position. Finally, Karel needs to collect the apple beneath him.

The corresponding code can be found below:

262

15.4. BUBBLE SORT

1 # Check both branches:

2 def collect

3 go

4 left

5 go

6 right

7 if apple # check Northwest square

8 collect

9 else

10 right

11 right

12 left

13 go

14 go

15 left

16 if apple # check Northeast square

17 collect

18 else

19 left

20 left

21 right

22 go

23 left

24 go

25 if apple # check for apple at the initial position

26 get

27

28 # Main program:

29 go

30 collect

31 go

32 left

33 go

A short video of Karel performing this program is available at https://youtu.be/
Z659mYXHWuc.

15.4. Bubble sort

Sorting algorithms constitute another important chapter of computer science. Bubble sort

263

https://youtu.be/Z659mYXHWuc
https://youtu.be/Z659mYXHWuc

15. ADVANCED APPLICATIONS

is not the most sophisticated one, but it is great as a stepping stone before learning Quick-
Sort and other more advanced sorting algorithms.

In Karel, a sequence of numbers could be represented by a list. But that would not be
fun. So, let’s represent the numbers visually as piles of beepers. Of course the sequence is
random. Let’s say that it contains 6 numbers:

Random initial sequence.

The idea of the bubble sort algorithm is simple: Karel passes through the sequence from
left to right, and whenever he sees that the next number is less than the current one, he
switches them.

Of course, it is not sufficient to only do this once, because the sequence 2, 1, 1, 1

would just become 1, 2, 1, 1 which is not sorted yet. When the sequence has N num-
bers, Karel needs to make N-1 passes. Here is the corresponding program:

PROGRAM 15.1. Bubble sort

1 # Number of piles:

2 n = 6

3

4 # Place p objects:

5 def place(p)

6 repeat p

7 put

8

9 # Move back n steps:

10 def back(s)

11 left

12 left

13 repeat n

14 go

15 right

16 right

17

18 # Collect all beepers in the pile and return their number:

19 def getall

264

15.4. BUBBLE SORT

20 c = 0

21 while beeper

22 get

23 inc(c)

24 return c

25

26 # Main program:

27 done = False

28 dec(n)

29 while not done

30 go

31 a = getall

32 done = True

33 repeat n

34 go

35 b = getall

36 back(1)

37 if a > b

38 done = False

39 place(b)

40 else

41 place(a)

42 a = b

43 go

44 while not empty

45 put

46 back(n+1)

47 dec(n)

48 print("Done!")

In the 1st cycle, Karel switches (5, 2)→ (2, 5), (6, 3)→ (3, 6), (6, 4)→ (4, 6) and (6, 1)→ (1,
6):

After the 1st cycle.

In the 2nd cycle, he switches (5, 3)→ (3, 5), (5, 4)→ (4, 5), (5, 4)→ (4, 5) and (5, 1)→ (1, 5):

265

15. ADVANCED APPLICATIONS

After the 2nd cycle.

In the 3rd cycle, he only switches (4, 1)→ (1, 4):

After the 3rd cycle.

In the 4th cycle, he only switches (3, 1)→ (1, 3):

After the 4th cycle.

In the 5th cycle, he only switches (2, 1)→ (1, 2), and he is done:

After the 5th cycle, the sequence is sorted.

A short video of Karel performing this program is available at https://youtu.be/b2_
YzJscFuo.

15.5. Reading Braille

Braille is a system of raised dots that can be read with the fingers by people who are blind
or who have low vision:

Reading Braille text.

266

https://youtu.be/b2_YzJscFuo
https://youtu.be/b2_YzJscFuo

15.5. READING BRAILLE

Teachers, parents, and others who are not visually impaired ordinarily read Braille with
their eyes. Braille is not a language. Rather, it is a code analogous to the Morse code. Each
letter is formed by 1 - 6 dots in a box of width 2 and height 3. For illustration, here is the
word "Karel" in Braille:

Karel’s own name in Braille.

For reference, this is the complete English alphabet in Braille:

All 26 English letters in Braille.

The algorithm is straightforward: First we write a function braillenum to translate the
Braille symbols to numerical codes. To do this, we enumerate the six positions in the 2× 3

box by 1, 2, 3 (left column, top to bottom) and by 4, 5, 6 (right column, top to bottom).
Then for each Braille letter, we will use these numbers to create a text string. For each dot,
the text string will contain the corresponding number. For example, ’a’ is ’1’, ’b’ is
’12’, ’c’ is ’14’ etc.

PROGRAM 15.2. Reading Braille text - part 1

1 # Translate one letter into numbers:

2 def braillenum

267

15. ADVANCED APPLICATIONS

3 s = ''

4 go

5 if beeper

6 s += '1'

7 go

8 if beeper

9 s += '2'

10 go

11 if beeper

12 s += '3'

13 left

14 go

15 left

16 if beeper

17 s6 = 1

18 else

19 s6 = 0

20 go

21 if beeper

22 s5 = 1

23 else

24 s5 = 0

25 go

26 if beeper

27 s4 = 1

28 else

29 s4 = 0

30 if s4 == 1

31 s += '4'

32 if s5 == 1

33 s += '5'

34 if s6 == 1

35 s += '6'

36 repeat 2

37 go

38 right

39 return s

268

15.5. READING BRAILLE

Then we write the resulting function braille to translate the numerical codes to English
letters. Actually this is just one long if-elif-else statement:

PROGRAM 15.3. Reading Braille text - part 2

1 # Read one letter as a string and analyze it:

2 def braille

3 b = braillenum

4 if b == '1'

5 return 'a'

6 elif b == '12'

7 return 'b'

8 elif b == '14'

9 return 'c'

10 elif b == '145'

11 return 'd'

12 elif b == '15'

13 return 'e'

14 elif b == '124'

15 return 'f'

16 elif b == '1245'

17 return 'g'

18 elif b == '125'

19 return 'h'

20 elif b == '24'

21 return 'i'

22 elif b == '245'

23 return 'j'

24 elif b == '13'

25 return 'k'

26 elif b == '123'

27 return 'l'

28 elif b == '134'

29 return 'm'

30 elif b == '1345'

31 return 'n'

32 elif b == '135'

33 return 'o'

34 elif b == '1234'

35 return 'p'

269

15. ADVANCED APPLICATIONS

36 elif b == '12345'

37 return 'q'

38 elif b == '1235'

39 return 'r'

40 elif b == '234'

41 return 's'

42 elif b == '2345'

43 return 't'

44 elif b == '136'

45 return 'u'

46 elif b == '1236'

47 return 'v'

48 elif b == '2456'

49 return 'w'

50 elif b == '1346'

51 return 'x'

52 elif b == '13456'

53 return 'y'

54 elif b == '1356'

55 return 'z'

56 else

57 return '?'

58

59 # Main program:

60 word = ''

61 while not home

62 word += braille

63 print(word)

15.6. Cardan grille

The Cardan grille is an old encryption technique which assumes that the text is written in
a square table. The size of the table corresponds to the number of letters. For example, a
5 × 5 table is enough for a 25-letter text. A table of the size 8 × 8 can be used for a text of
up to 64 letters.

The grille itself is a square cloth (or paper) whose size matches the size of the table of
letters. The cloth contains holes so that when laid over the text, certain letters appear. The
following example shows a 6 × 6 table of letters, and a grille which when laid over the
text reveals "JULESVERN".

270

15.6. CARDAN GRILLE

Sample Cardan grille.

The sender and the addressee each have a copy of the grille, and the grille never travels
along with the encrypted text message.

After the addressee reads the first group of letters, s/he rotates the grille by 90 degrees
and reads part 2. Then s/he rotates the grille by another 90 degrees and reads part 3. And
finally, s/he rotates the grille one last time and reads part 4.

If the grille is designed well, then rotating it each time reveals a different group of
letters. However, if the grille is flawed, it can happen that rotating the grille reveals a po-
sition which was already revealed before. This problem is present in the following grille
(where the gold coins represent the holes). Can you find it?

Flawed Cardan grille.

On the other hand, the following grille is designed correctly and the above problem does
not occur:

271

15. ADVANCED APPLICATIONS

Well-designed Cardan grille.

Karel’s task is to analyse a given 6 × 6 Cardan grille and count the flaws. A zero result
means that the grille is well designed.

The algorithm is as follows: As a first step, we will write a function findholes to
locate all holes and store their GPS coordinates (relative to the bottom-left corner of the
grille) in a helper list H.

PROGRAM 15.4. Checking a Cardan grille - part 1

1 # Create a list of the GPS coordinates of all holes. Lower left corner of

grille is [0, 0]:

2 def findholes

3 holes = []

4 repeat 6

5 repeat 6

6 go

7 if coin

8 holes.append([gpsx - 5, gpsy - 3])

9 left

10 left

11 repeat 6

12 go

13 right

14 go

15 right

16 return holes

272

15.6. CARDAN GRILLE

Next, we will write a Boolean function check(i, j, L) to check whether the list L con-
tains the position [i, j] rotated by 90, 180 or 270 degrees.

PROGRAM 15.5. Checking a Cardan grille - part 2

1 # Return True if position [i, j], rotated by 0, 90, 180 and 270 degrees, is

2 # (a) not found or (b) is found more than once in the list L.

3 # Otherwise return 0:

4 def check(i, j, L)

5 count = 0

6 if [i, j] in L

7 inc(count)

8 if [5-j, i] in L

9 inc(count)

10 if [5-i, 5-j] in L

11 inc(count)

12 if [j, 5-i] in L

13 inc(count)

14 if count == 0 or count > 1

15 return True

16 return False

And in the main program we will check all nine positions in the lower-left 3 × 3 quadrant
of the 6 × 6 grille:

PROGRAM 15.6. Checking a Cardan grille - part 3

1 # Main program:

2 H = findholes

3 res = 0

4 l = [0, 1, 2]

5 for ipos in l

6 for jpos in l

7 f = check(ipos, jpos, H)

8 if f == 1

9 print("Problem found at", ipos, jpos)

10 inc(res, f)

11 print("Flaws found:", res)

273

15. ADVANCED APPLICATIONS

15.7. Land surveyor

Karel works as a land surveyor. Today he needs to measure the area of a fenced garden.

Sample fenced area.

But he cannot enter because there is a big dog inside, and Karel is afraid of dogs. Fortu-
nately, he knows how this can be done without entering the garden!

Let’s demonstrate his method on a small one-square garden shown below. Karel creates a
new variable A = 0 for the area and walks along the fence. After each step, he positions
himself to face away from the fence. Depending whether he is facing South, East, North
or West, he does the following:

If you face South, decrease A by gpsy+1.

Since his gpsy is 1 and A was 0, after this operation A will be -2.

274

15.7. LAND SURVEYOR

Here Karel’s gpsy is 3. Adding 3 to A will change the value of A to 1:

If you face North, increase A by gpsy.

If Karel faces East or West, the value of A will not change:

If you face East or West, do not change A.

Hence Karel correctly calculated that the area A of this mini-garden is 1.
Below is the corresponding program which moreover uses the Second Maze Algorithm

to walk around the garden. Karel stores his initial GPS coordinates so that he knows where
to stop:

1 # Are you facing South?

2 def south

3 left

4 left

5 s = north

6 right

7 right

8 return s

9

10 # Remember GPS coordinates:

11 x = gpsx

12 y = gpsy

13 # Variable A for the area:

14 A = 0

275

15. ADVANCED APPLICATIONS

15 # Make the first step:

16 while wall

17 if north

18 dec(A, gpsy)

19 if south

20 inc(A, gpsy)

21 dec(A)

22 right

23 go

24 # Walk around fence:

25 while (x != gpsx) or (y != gpsy)

26 left

27 while wall

28 if north

29 dec(A, gpsy)

30 if south

31 inc(A, gpsy)

32 dec(A)

33 right

34 go

35 # Print the result:

36 print("Area =", A)

For the K-shaped garden shown at the beginning of this section, Karel obtains:

15.8. The Eight Queens puzzle

This is a classical puzzle whose objective is to place eight queens on the chess board so
that they do not threaten each other. Recall that the queen is the most powerful figure on
the chess board - she dominates the column, the row, and both diagonals from where she
stands. In other words, no two queens can stand in the same row, in the same column, or
on the same diagonal. Below is a sample solution:

276

15.8. THE EIGHT QUEENS PUZZLE

One of 92 existing solutions.

The queens will be represented by masks. Karel’s task is to analyse the positions of the
eight queens and determine whether or not some of them threaten each other.

Queens are represented by masks.

The task will be solved in two steps. First, the function sweep will be used to go through
the entire chess board, locate all queens, and store their GPS coordinates in a list:

277

15. ADVANCED APPLICATIONS

1 # Add the GPS positions of all queens to a list:

2 def sweep

3 q = []

4 while gpsx != 10 or gpsy != 2

5 go

6 if mask

7 q.append([gpsx, gpsy])

8 if wall

9 if north

10 right

11 go

12 if mask

13 q.append([gpsx, gpsy])

14 right

15 else

16 left

17 go

18 if mask

19 q.append([gpsx, gpsy])

20 left

21 return q

In the next step, this list will be analysed. If Karel finds two pairs of coordinates which
have the same X component and a different Y component, then he knows he found two
queens in the same column. If he finds two pairs of coordinates which have the same Y
component and a different X component, then he knows that he found two queens in the
same row.

How can he check the diagonals? Notice that positions on the same diagonal, such
as [1, 6], [2, 5], [3, 4], 4, 3, [5, 2], [6, 1] satisfy that the sum of the X and Y coordinates
is constant (in this case 7). This is true for all diagonals which go from from Northwest
to Southeast, just the constants differ. For the remaining diagonals which go from from
Southwest to Northeast, such as [4, 1], [5, 2], [6, 3], [7, 4] etc. it holds that the difference Y
- X is constant (in this case -3). Again the constant differs from one diagonal to another.

In the function analyze below, Karel considers all 8 rows, all 8 columns, and all NW-
SE and SW-NE diagonals. In each case he is looking into the list L to see whether two (or
more) queens are there, threatening each other:

278

15.8. THE EIGHT QUEENS PUZZLE

1 # Analyze the list:

2 def analyze(L)

3 # We will go through the list once, counting queens in every column, row,

and diagonal:

4 cols = [0, 0, 0, 0, 0, 0, 0, 0]

5 rows = [0, 0, 0, 0, 0, 0, 0, 0]

6 dia1 = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

7 dia2 = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

8 for pos in L

9 posx = pos[0] - 3

10 posy = pos[1] - 2

11 cols[posx] += 1

12 rows[posy] += 1

13 dia1[posx + posy] += 1

14 dia2[posy - posx + 7] += 1

15 print(cols)

16 print(rows)

17 print(dia1)

18 print(dia2)

19 # Check if there is more than one queen in some column, row, or diagonal:

20 success = True

21 for x in cols

22 if x == 0

23 print("No queen found in column", x)

24 success = False

25 if x > 1

26 print("More than one queen found in column", x)

27 success = False

28 for y in rows

29 if y == 0

30 print("No queen found in row", y)

31 success = False

32 if y > 1

33 print("More than one queen found in row", y)

34 success = False

35 for n in dia1

36 if n > 1

37 print("More than one queen found on a NW-SE diagonal.")

38 success = False

279

15. ADVANCED APPLICATIONS

39 for n in dia2

40 if n > 1

41 print("More than one queen found on a SW-NE diagonal.")

42 success = False

43 return success

44

45 # Main program:

46 Q = sweep

47 ok = analyze(Q)

48 if ok

49 print("No threats found.")

50 else

51 print("Threats found!")

52 go

280

A. Karel App in NCLab

The Karel app is located in the Programming section of the Creative Suite on NCLab’s
Desktop. It allows you to create your own mazes and games, write your own programs,
save them in your NCLab user account, and publish them online and share with others.
In this chapter, we will show you how to launch the Karel application and how to use it.

A.1. Launching the Karel app

The Karel app opens with a demo program:

The Karel app in programming mode, with a demo program.

The top menu bar includes three items: File, Settings, and Help along with two zoom
icons. The File menu allows you to open a new instance of the application, open an exist-
ing file, save the maze to a file, etc. The Settings menu allows you to change the robot’s
speed, show/hide the status bar, highlight the active line of the code, etc. The status bar
is located on the bottom of the window and it displays important information about the
status of the robot.

281

A. KAREL APP IN NCLAB

The Karel app has 4 modes: Manual, Programming, Designer, and Games. The Manual
mode allows the user to guide the robot using the mouse or keyboard. For more informa-
tion about the Manual mode visit Section 2.1 on page 8.

The Programming mode makes it possible to write, execute, and debug programs for
Karel. For more details about the Programming mode visit Section 2.5 on page 11.

A.2. Building mazes

The Designer mode allows you to create your own mazes, save them in your NCLab user
account, and to share them with others online. This is how the Karel app looks in Designer
mode:

The Karel app in Designer mode.

The Designer has its own menu on top:

Designer menu.

From left to right, the functions of the menu buttons are as follows:

(1) Themes: The Designer offers over 20 different themes including Zoo, Garden,
Mines, Desert, Jungle, Factory, Mountains, etc. In each theme, there are several

282

A.2. BUILDING MAZES

wallpapers to choose from. For example, five wallpapers are available in the Jun-
gle theme. Clicking on a wallpaper will install it to the maze:

Jungle theme wallpapers.

(2) Obstacles: The Obstacles button is the second one from the left in the Designer
menu, and it has a grey wall on it. There are more than 40 different obstacles
including wall, fire, water, stone, acid, etc. To install an obstacle into the maze,
click on it and then click into the maze. There are two types of obstacles: thin
(one-dimensional) and thick (two-dimensional). The thin ones occupy an edge of
a square. The thick ones take an entire grid square. There are 21 different types of
walls.

(3) Collectible objects: Over 60 different types of collectible objects are available under
the pumpkin button (third one from the left).

(4) Containers: Containers (the fourth button from the left with a basket on it) are
objects which can store other objects in them. When placing a container, one can
specify its capacity as well as the types of objects that it admits. Karel has 14 types
of containers: mark, target (target is invisible to the user, mark is visible), box,
bag, basket, mining cart, etc.

(5) Erase mode: The button with the red mark “X” on it is used to remove individ-
ual objects, containers, or obstacles from the maze. If this button is toggled, one
can move the mouse over the maze and start removing objects. One can remove
everything except for the robot and his home square. The home square can be
hidden in the Maze menu which is located above the maze.

283

A. KAREL APP IN NCLAB

(6) Erase all: Pressing the button with the eraser mark on it will instantly remove all
objects, containers and obstacles from the maze. This comes handy when one is
starting to design a completely new maze.

(7) Random mode: When this button is toggled, obstacles, collectible objects, and con-
tainers will be added to random positions in the maze as one clicks on them in the
left panel.

(8) Undo: This is the fourth button from the right. The Designer remembers all your
actions (since the app was last launched), so all of them can be undone using this
button.

(9) Redo: If you have used the Undo button, then this button will undo the undo.
(10) Left: The left arrow button will turn Karel left 90 degrees.
(11) Right: The right arrow button will turn Karel right 90 degrees.

Besides this, one can use the mouse to drag and drop the robot, the home square, as well
as all the obstacles, collectible objects, and containers.

When the maze has unsaved changes, the button "Save maze" will start flashing, re-
minding you to click on it and save maze changes. If the maze hasn’t been saved yet, then
the File Manager will launch, asking you to choose a folder and filename. Otherwise, the
maze will just be saved to the existing file and the button will stop flashing.

A.3. Create your own game!

Let’s create a game! First of all, you need to figure out a story and a task for Karel. Today,
Karel will be exploring an abandoned gold mine and collecting nuggets. However, he
must beware of skulls and radiation! If comes across them, he must pass them either on
the right or on the left.

The first step in creating a game is to launch the Karel app and write the story. For this,
click on the welcome message of the Karel app. The text will open in a WYSIWYG text
editor. The editor allows you to insert and remove text, change text size, font and color,
insert images, code snippets, and even videos, and do many other things.

Although sometimes one is tempted to write a long and intricate story, keep in mind
that the story is not the main objective of the game. Make it short and sweet. And most
importantly - precise. It should be perfectly clear to the users what the game goal is.

284

A.3. CREATE YOUR OWN GAME!

Writing the story in the WYSIWYG text editor.

When you are satisfied with the story, hit "Save" in the upper left part of the text editor.
This will save the text and exit the editor.

After exiting the editor, the story is ready.

At this point you can still lose all your changes (for example, if your computer gets dis-
connected from the Internet). So, let’s save the file in your NCLab account. This can be
done by clicking on "Save in NCLab" in the File menu:

285

A. KAREL APP IN NCLAB

Saving the file in your NCLab account.

This will launch the File Manager, and you will be able to enter the file name as well as
select the folder where your game should be saved. We saved the file under the name "In
the Mines":

When the file is saved, the name is displayed in the header.

The next step is to build a maze to match the story. You already know from Section A.2
how to do that, so we will leave this step to you. Try to come up with your own maze!
The maze we created is shown below:

286

A.4. CHECK HOW DIFFICULT YOUR GAME IS

The Designer is used to build the maze for the story.

When your maze is finished, do not forget to click on the blinking button "Save maze"
before leaving the Designer.

A.4. Check how difficult your game is

It is very easy to build a maze which is extremely difficult or impossible to solve. There-
fore, at this point, it is important that you try and solve the maze by yourself. When you
plan for your game to be in manual mode, switch to Manual mode and solve it. When
your game will be in programming mode, then switch to Programming mode and write
the corresponding program. Here is our program which is based on the First Maze Algo-
rithm, enhanced with additional tests for skulls and radiation:

1 while not home

2 go

3 if nugget

4 get

5 if wall or skull or radiation

6 left

287

A. KAREL APP IN NCLAB

7 if wall or skull or radiation

8 right

9 right

That was not too difficult, was it? Nine lines is a short code. But to achieve this most
elegant solution, the user needs to realize that the skulls and radiation should be treated
just as additional types of walls. Not everybody will do that - most frequently the users
will try to handle the walls and the remaining obstacles separately. Then their code will be
longer, and they should get fewer points for that. This brings us to the next step - defining
game goals.

A.5. Convert worksheet into a game

In order to define game goals, we need to convert the worksheet into a game first. This is
done by clicking on "Convert into game" in the File menu:

Converting the worksheet into a game.

This is an irreversible change, so be sure that you want to do this. The menu in the upper
part of the window will change:

288

A.5. CONVERT WORKSHEET INTO A GAME

After converting into a game, the upper menu changes.

The button "Play game" can be used to play the game as if you were the user. But we are
not there yet. First, we need to define game goals. For this, click on "Edit game". Then the
following menu will appear:

Edit game menu.

In the column on the left you will see many different flags. Each flag represents one lan-
guage - in case you want to have your game translated into several languages. The top

289

A. KAREL APP IN NCLAB

menu contains the following items:

• Solution: This is where you insert the correct solution (in Programming mode
only).
• Initial code: This is where you insert the code that the user should see at the

beginning (if any).
• Code template: This is where you insert help code (if any). The user will see he

Code template button when they start the game.
• Pages: This is where you can add / edit / remove introductory pages with expla-

nations.
• Hints: Here you can specify hints which the user will obtain after the first failure,

second failure, etc.
• Links: Here you can specify links to a PDF document and a tutorial video.
• Goals: Here you define game goals. We will discuss this step separately.
• Variables: Here you can specify variables whose values should be checked at the

end.

A.6. Define game goals

The panel used to define game goals is shown below. It contains the following items:

• Steps: Here you can limit the maximum number of steps Karel is allowed to make.
• Max. operations: Here you can limit the maximum number of operations.
• Objects to collect: In case you want Karel to collect some ojects in the maze but not

all, here you can state their number.
• Collect all objects: Check this box if Karel is supposed to collect all objects in the

maze.
• Victory message: Here you can type a custom victory message. The first_name in

the curly braces will be replaced by the user’s name as defined in his/her Settings.
• Face direction: If you want Karel to face a given direction (West, East, South or

North) after the game finishes, select it here.
• Max. lines / points: This is where you specify how many points the user is getting

for various numbers of lines. Typically, the shorter the program, the more points.
• Stepping mode only: This option will force the user to step through the code.
• Lock code: Checking this box will freeze the code - it will become non-editable.

290

A.7. FINAL TEST

Game goals panel.

• Enable Code Sharing for students: This option is used when creating courses.
• Mode: Here you choose whether your game should be in Manual or Programming

mode.
• Fill all containers: If the maze contains containers, here you can require that Karel

fills them all.
• Finish: Here you choose where Karel should be when the program ends.

The rest are technical options used for course creation.

A.7. Final test

After game goals have been defined, you need to press the "Play game" button and try to
solve the puzzle as a user would. This will make sure that all game goals can be fulfilled
and the game is solvable.

291

A. KAREL APP IN NCLAB

Playing the game in user mode.

That’s it, your game is now ready! In the next section we will show you how to share it
with others, and let them play it.

A.8. Publish your game in the Internet!

Let us now publish our example game and share it with others. For this, one needs to
open the File menu and click on "Publish to the web":

The File menu offers "Publish to the web".

292

A.8. PUBLISH YOUR GAME IN THE INTERNET!

A window “Publishing options” should open:

Selection of “Anyone can view and run”.

Here, you will be offered several options for publishing your game. This is the generic
publishing menu for all programs in NCLab, so some of the options may not be relevant
at this moment.

We recommend the option “Anyone can view and run”. This will allow the users to view
and play your game, but they will not be given access to the Edit menu and to the De-
signer - hence they will not be able to modify their copy of the game. If you wanted to
enable them to do that, you would select the last menu option with the most access. BTW,
do not worry about the users changing your original game worksheet - they cannot. Even
if they are allowed to make changes, it is only in their copy.

Finally, you can post the public link to the game directly to social networks using the
corresponding buttons. Or, you can copy the link and share it with others, for example,
via email. Anybody with this link will be able to click on it and play your game.

293

B. Self-Paced Karel Course in NCLab

NCLab provides a self-paced gamified Karel course based on this textbook. Students beat
levels like in a computer game, and they collect points and certificates. The course is pop-
ular with home schooled students, students in schools, and adult learners alike. It is not
easy but it is rewarding. The course helps develop logic, computational thinking, problem
solving, and perseverance. These skills are needed very much in computer programming
but also in many other careers. After finishing the Karel course, the students have a solid
foundation of logic and computatonal thinking, and moreover they are used to write pro-
grams in a simplified Python language. Therefore, students are ready for a quick and
seamless transition to Python programming.

B.1. Age groups and prerequisites

There is no age limit - the course teaches skills which are age-independent, and is popular
with students of all ages. The only prerequisite is keyboarding. Therefore we do not
recommend it for children under 6 years.

B.2. Brief overview

The Karel language is the perfect language for beginning programmers. It will teach you
how to design algorithms and write working computer programs without struggling with
technical complications of mainstream programming languages. Also, Karel teaches all
important concepts of modern procedural programming languages including correct code
formatting, counting loops, if-else conditions, conditional loops, custom commands, func-
tions, variables, lists, and recursion. The course comes with examples and tutorial videos
that ensure that every student can progress at his or her own pace.

294

B.7. SYLLABUS, LESSON PLANS, PACING GUIDE

B.3. What does it take to be an instructor

The course can be taken at home without an instructor. It contains many examples and
videos which make it completely self-paced. For schools and institutions: The instructor
does not have to be an expert in computer programming. In fact, many educators use
the Karel course to learn computational thinking skills themselves, and adult learners in
general enjoy the course as much as K-12 students do.

B.4. Role of the instructor

Although the course is self-paced, the instructor (or homeschooling parent) still plays
an important role as a coach. The course forces the students to change their problem-
solving habits. Without thinking first, they fail to solve the task. This can lead to an initial
frustration which is easier to overcome with the guidance and help of an instructor or
parent. The students will gradually become independent thinkers and problem solvers,
and will require your assistance less and less often.

B.5. Instructor training

NCLab provides instructor training. Contact us at office@nclab.com or (775) 300-7667
for details.

B.6. Course structure

The course has two parts - a self-paced part and creative projects. The self-paced part
comprises 5 Units with 5 Sections each. Every Section contains eight game levels and a
quiz. This makes for a total of 225 game levels. Students receive a new certificate after
finishing each Unit. There is a project for each section (25 projects total). More details
about the projects will be given in Section B.9.

B.7. Syllabus, lesson plans, pacing guide

The syllabus, lesson plans, and pacing guide can be downloaded from the Instructor Re-
sources page https://nclab.com/karel-resources/.

295

https://nclab.com/karel-resources/

B. SELF-PACED KAREL COURSE IN NCLAB

B.8. Student journals, cheat sheets, solution manuals

The resources page https://nclab.com/karel-resources/ also provides student
journals, a cheat sheet with a quick overview of Karel commands, and a solution manual
for instructors. An instructor also has access to solutions directly in the game levels.

B.9. Creative projects

The course comes with creative projects which are designed to allow the students to apply
what they learned in each Section. There are 25 projects:

• Make a Maze
• Draw Your Name
• Stuff, Stuff, Stuff
• Fix It!
• Rules of Fun
• No Walls
• Detective
• Maze Master
• 12345
• Fruit loops
• Def-initely
• Strange Shapes
• Hard Fun
• Counting Up
• Three Rooms
• More Rooms
• True and False
• Minimal Maze
• Guide on the Side
• Uncertain Times
• Access Denied
• Maximm Maze
• Full Circle
• Real Robots
• Ball-in-a-maze

296

https://nclab.com/karel-resources/

B.11. CONTACT US

Project "Make a Maze".

B.10. Explore NCLab

Great work - congratulations on finishing this textbook! The next step is to explore NCLab
at http://nclab.com/.

B.11. Contact us

Our main office is located at 450 Sinclair St, Reno, NV 89501, U.S.A. Whether you are a
homeschooling parent looking to teach computer programming to your kids, or an ed-
ucator in the K-12 or higher-ed systems, we can help you achieve your goals. You will
find our team extremely friendly and responsive. We can be reached using the email
office@nclab.com or by calling (775) 300-7667. We hope to hear from you!

297

http://nclab.com/

Index

False, 185

True, 185

and, 69, 183

append, 225

dec, 132

def, 101

del, 233

do-while, 94

else, 61

empty, 67, 192

for, 25, 94

get, 8, 11

go, 8, 11

gpsx, 187

gpsy, 187, 275

home, 73, 192

if, 54, 194

if-elif-else, 73

if-else, 75

in, 161, 229

inc, 132

left, 8, 11

north, 64, 192

not, 66

or, 70, 184

pass, 65

pop, 231

print, 63, 130

put, 8, 11

repeat, 25, 28, 32, 36

return, 141

right, 8, 11

until, 94

wall, 54, 192

while, 79, 195

while True, 196

algorithm, 12

argument, 149

body

of condition, 55

of loop, 80

Boolean

algebra, 182, 184

function, 75, 190, 192, 273

values, 185, 190

variables, 185, 186

Braille, i, 266

Bubble sort, 263

bug, 18

Cardan grille, 270

case-sensitive, 21

code, 13

coin toss, 214

collectible objects, 58

comment, 26

commenting code, 26

conditions, 53

containers, 60

control prints, 195

cryptography, 200, 270

custom commands, 97

298

INDEX

debugging, 18, 194

East, 9

efficiency, 119

Eight Queens puzzle, 276

ellipsis, 73

error

logical, 12, 15

message, 30

syntax, 17, 30

Fibonnacci, 137

FIFO, 21

FILO, 20

First Maze Algorithm, 87

failure, 89

right-handed, 91

function, 141

G. Boole, 182

GPS, 187, 272, 278

immutable, 151

implementation, 13

indentation, 25, 29

Karel Čapek, 1

keyboard controls, 10

Law of Large Numbers, 217

list, 223

for loop, 228

addition, 232

appending items, 225

deleting items, 233

empty, 224

indices, 226

length, 226

multiplication, 232

nonempty, 224

of lists, 227

logic, 183

loop

for, 25, 156, 228

repeat, 25, 28, 36, 79

while, 195

conditional, 79

counting, 25

infinite, 197

nested, 39, 40, 42-44, 47-50

maximum, 206

minimum, 211

mode

designer, 282

games, 282, 284

manual, 8, 10, 282

programming, 11, 281, 282

Morse, 267

Morse code, 172, 173, 175, 176, 178,

181

North, 9

obstacles, 56

operation, 10, 119, 120

operator

and, 183

or, 184

arithmetic, 131, 132

assignment, 130

comparison, 133, 135, 190

parameter, 149

Pascal, 3

print, 197

probability, 214

program, 13

Python, 3, 5, 21, 25, 63, 94, 132,

156

queue, 21

R.E. Pattis, 2

R.U.R., 1

random

Booleans, 213

integers, 196, 201

299

INDEX

walks, 218

randomness, 200

recursion, 243, 245, 249, 258, 260,

262

adding numbers, 254

binary tree, 262

infinite, 250

parsing lists, 255

stopping condition, 247, 249, 253,

262

repeating pattern, 30, 39

S.F.B. Morse, 172

scope

global, 147

local, 146

Second Maze Algorithm, 113

right-handed, 117

sensor

banana, 59, 60

beeper, 59

coconut, 61

empty, 67, 68

fire, 56

home, 73

north, 64

spider, 59

wall, 54

water, 56

acid, 72

sensors, 192

solution

efficient, 15

inferior, 15

superior, 14

South, 9

stack, 20

step, 10

stepping, 80

subtask, 101

syntax, 16

testing, 172

text string, 155

for loop, 156

addition, 155

as code, 167

displaying quotes, 160

indices, 157

length, 156

multiplication, 155

reversing, 156

search and replace, 164

slicing, 159

substring, 161-166

truth table, 183, 184

variable, 128

Boolean, 128

displaying, 130

global, 147

initialization, 130

local, 146

name, 129

numerical, 128

text string, 128

West, 9

300

	Preface
	About Karel the Robot
	About the Author
	Acknowledgment

	1. Introduction
	1.1. Karel Capek and his 1921 play R.U.R.
	1.2. Brief history of the Karel language
	1.3. Various past implementations
	1.4. New Karel language based on Python
	1.5. Command right and some other new features
	1.6. What can Karel do?
	1.7. How does Karel differ from Python?
	1.8. Review questions

	2. Basic Commands
	2.1. Manual mode
	2.2. Steps and operations
	2.3. Using keyboard controls
	2.4. Seeing the world through the robot's eyes
	2.5. Programming mode
	2.6. Algorithm vs. program
	2.7. Usually, a task has more than one solution
	2.8. How to recognize the best solution
	2.9. Logical errors
	2.10. Syntax rules and syntax errors
	2.11. Debugging and where did the word "bug" come from
	2.12. Karel's bag
	2.13. FILO (stack) and FIFO (queue)
	2.14. Karel is case-sensitive
	2.15. Review questions

	3. Counting Loop
	3.1. Counting loop and the keyword repeat
	3.2. Commenting your code
	3.3. Repeating a sequence of commands
	3.4. Indentation matters
	3.5. How to figure out repeating patterns quickly and correctly
	3.6. Stashing coins
	3.7. Cooking potatoes
	3.8. When it is not be possible to start a loop right away
	3.9. Additional commands might be needed after a loop finishes
	3.10. Nested loops
	3.11. Revisiting previous programs
	3.12. Crab cake
	3.13. Starfish square
	3.14. Triple-nested loops
	3.15. Pearl necklace
	3.16. Even more levels of nesting
	3.17. Review questions

	4. Conditions
	4.1. What are conditions?
	4.2. Why does Karel need them?
	4.3. Karel's wall sensor and the if statement
	4.4. What happens if there is no wall?
	4.5. Other types of obstacles
	4.6. Combining loops and conditions
	4.7. Collectible objects
	4.8. Collecting bananas
	4.9. Containers
	4.10. Collecting coconuts
	4.11. The else branch
	4.12. Hurdle race
	4.13. Function print
	4.14. Sensor north
	4.15. Command pass
	4.16. Finding North
	4.17. Keyword not
	4.18. Sensor empty
	4.19. Keyword and
	4.20. Bounty
	4.21. Keyword or
	4.22. Danger
	4.23. Sensor home
	4.24. The full if-elif-else statement
	4.25. More is coming!
	4.26. Review questions

	5. Conditional Loop
	5.1. Conditional loop and the keyword while
	5.2. The difference between the conditional and counting loops
	5.3. Step by step
	5.4. Climbing a pyramid
	5.5. Narrow escape
	5.6. Combining the repeat and while loops
	5.7. First Maze Algorithm (FMA)
	5.8. Three possible failures of the FMA
	5.9. Right-handed version of the FMA
	5.10. Other types of mazes the FMA can handle
	5.11. Improving Program 4.9 "Finding North"
	5.12. Improving Program 4.12 "Emptying bag"
	5.13. Improving Program 4.17 "Danger"
	5.14. Improving Program 4.18 "Tunnel"
	5.15. Other types of loops: do-while, until, and for
	5.16. More is coming!
	5.17. Review questions

	6. Custom Commands
	6.1. Why are custom commands useful?
	6.2. Defining a custom command star
	6.3. Assembling the solution of the main task
	6.4. Collecting water bottles
	6.5. The optional return statement
	6.6. Arcade game
	6.7. Second Maze Algorithm (SMA)
	6.8. Right-handed version of the SMA
	6.9. Rock climbing
	6.10. Program length vs. efficiency
	6.11. Writing monolithic code vs. using custom commands
	6.12. Defining commands inside other commands
	6.13. Create your own Karel language!
	6.14. Review questions

	7. Variables
	7.1. What are variables and why are they useful?
	7.2. Types of variables
	7.3. Choosing the names of variables
	7.4. Creating and initializing numerical variables
	7.5. Assignment operator =
	7.6. Displaying the values of variables
	7.7. Basic math operations with variables
	7.8. Keywords inc and dec
	7.9. Arithmetic operators +=, -=, *= and /=
	7.10. Comparison operators ==, !=, <, <=, > and >=
	7.11. Counting maps
	7.12. Water supply
	7.13. Karel and the Fibonacci sequence
	7.14. Review questions

	8. Functions
	8.1. Defining and using functions
	8.2. Builder
	8.3. Storekeeper
	8.4. Local variables and local scope
	8.5. Global variables and global scope
	8.6. Functions that accept arguments
	8.7. Can a function change the values of its arguments?
	8.8. Review questions

	9. Text Strings
	9.1. Raw text strings and text string variables
	9.2. Assigning, displaying, and comparing text strings
	9.3. Concatenating text strings
	9.4. Multiplying text strings with integers
	9.5. Length of a text string
	9.6. Parsing a text string with the for loop
	9.7. Reversing text strings
	9.8. Extracting individual characters by their indices
	9.9. Using negative indices
	9.10. Slicing text strings
	9.11. Displaying quotes in text strings
	9.12. Checking for substrings
	9.13. Counting occurrences of substrings
	9.14. Finding the positions of substrings
	9.15. Searching and replacing in text strings
	9.16. Removing substrings
	9.17. Swapping substrings
	9.18. Executing text strings as code
	9.19. Your homework
	9.20. Review questions

	10. Testing Your Programs
	10.1. Morse code project - Part I
	10.2. Testing the function row
	10.3. Morse code project - Part II
	10.4. Testing the function english(symbol)
	10.5. Morse code project - Part III
	10.6. Your homework
	10.7. Review questions

	11. Boolean Values, Variables, Expressions, and Functions
	11.1. George Boole
	11.2. Quick introduction to logic
	11.3. What is Boolean algebra?
	11.4. Boolean values and variables in Karel
	11.5. GPS sensors gpsx and gpsy
	11.6. Comparison operators ==, !=, <, >, <= and >=
	11.7. Boolean functions
	11.8. Karel's sensors are Boolean functions
	11.9. The if statement revisited
	11.10. Using the if statement to display debugging information
	11.11. Another look at the while loop
	11.12. Infinite loop while True
	11.13. Review questions

	12. Randomness and Probability
	12.1. Why is randomness useful in computing
	12.2. Generating random integers
	12.3. Karel is rolling a die
	12.4. Placing objects at random locations
	12.5. Building a random skyline
	12.6. Calculating the maximum
	12.7. Measuring the height of a skyline
	12.8. Measuring the height of a building
	12.9. Calculating the minimum
	12.10. Measuring the clearance of a cave
	12.11. Generating random Booleans
	12.12. Karel is tossing a coin
	12.13. Calculating probabilities
	12.14. Probability of events vs. their frequency
	12.15. Karel and random walks
	12.16. Using randomness to solve difficult tasks
	12.17. Review questions

	13. Lists
	13.1. What are lists and why they are useful
	13.2. Creating empty and nonempty lists
	13.3. Appending items to a list
	13.4. Measuring the length of a list
	13.5. Accessing list items via their indices
	13.6. Creating a list of lists
	13.7. Parsing lists with the for loop
	13.8. Checking if an item is in a list
	13.9. Removing and returning ("popping") items from a list
	13.10. Adding lists
	13.11. Multiplying lists with integers
	13.12. Deleting items from a list
	13.13. Gardener
	13.14. Expedition Antarctica
	13.15. Copycat
	13.16. Review questions

	14. Recursion
	14.1. What is recursion and why is it useful
	14.2. Which tasks are suitable for recursion?
	14.3. Collecting shields
	14.4. Under the hood
	14.5. Forgetting the stopping condition
	14.6. Moving shields to boxes
	14.7. Museum heist
	14.8. Mutually recursive commands
	14.9. Using variables and functions in recursion
	14.10. Parsing lists using recursion
	14.11. Recursion at its best
	14.12. Review questions

	15. Advanced Applications
	15.1. Flood (recursion)
	15.2. Contraband (recursion)
	15.3. Traversing binary trees (recursion)
	15.4. Bubble sort
	15.5. Reading Braille
	15.6. Cardan grille
	15.7. Land surveyor
	15.8. The Eight Queens puzzle

	A. Karel App in NCLab
	A.1. Launching the Karel app
	A.2. Building mazes
	A.3. Create your own game!
	A.4. Check how difficult your game is
	A.5. Convert worksheet into a game
	A.6. Define game goals
	A.7. Final test
	A.8. Publish your game in the Internet!

	B. Self-Paced Karel Course in NCLab
	B.1. Age groups and prerequisites
	B.2. Brief overview
	B.3. What does it take to be an instructor
	B.4. Role of the instructor
	B.5. Instructor training
	B.6. Course structure
	B.7. Syllabus, lesson plans, pacing guide
	B.8. Student journals, cheat sheets, solution manuals
	B.9. Creative projects
	B.10. Explore NCLab
	B.11. Contact us

	Index

