Computing (2013) 95 (Suppl 1):S675-S694
DOI 10.1007/s00607-012-0255-3

NCLab: Public Computing Laboratory

Sascha M. Schnepp

Received: 20 November 2012 / Accepted: 3 December 2012 / Published online: 1 January 2013
© Springer-Verlag Wien 2012

Abstract This survey paper describes the Network Computing Laboratory (NCLab),
a novel public cloud computing platform for mathematics, programming, scien-
tific computing and computer simulations. Through a web-browser interface, it pro-
vides users with free access to interactive graphical modules that include symbolic
and numerical methods, programming in several languages, computing with Python
scientific libraries, computing with GNU Octave, GPU computing with CUDA,
computational geometry, 3D CAD design, computational graph theory, finite ele-
ment programming with the Hermes library, and interactive graphical finite element
modules. Users can upload files and data from their local computers, clone projects
from the database, share files, form teams, and collaborate on projects. This paper
briefly describes how NCLab operates, and it provides concise descriptions of NCLab
computational modules with examples of use.

Keywords Scientific computing - Network computing - Cloud computing -
GPU computing - Numerical methods - Python - Scipy - Octave - CUDA -

Finite element method

Mathematics Subject Classification 65F05 - 65F10 - 65T50 - 65L60 - 65105 -
68W30 - 05C85 - 97N30 - 97N40 - 97N80

1 Basic terminology of cloud computing

By cloud computing one usually means the use of computing resources (hardware and
software) that are delivered as a service over the Internet [1]. The word cloud in this

S. M. Schnepp ()

Laboratory for Electromagnetic Fields and Microwave Electronics,
ETH Ziirich, Gloriastrasse 35, 8092 Ziirich, Switzerland

e-mail: schnepps @ethz.ch

@ Springer

S676 S. M. Schnepp

context stands for a (typically large) computer cluster where virtual computers with
variable parameters (disk space, runtime memory, number of cores) can be allocated
dynamically based on actual demand. This model is based on “renting” rather than
“owning” and it has some obvious advantages—for example, the user does not have
to maintain or renew the hardware. The rapid expansion of this new paradigm can be
illustrated by a large amount of new terminology that appeared in the last few years:

e Infrastructure as a service (laaS) This is the most basic cloud computing model
where providers offer access to their servers. The user typically has admin access
to the server and can install and run his own software.

e Platform as a service (PaaS) This model provides a comprehensive computing
platform that typically includes tools to develop software, database, web server
etc.

e Software as a service (SaaS) In this model the provider installs and maintains
some software on his servers and lets users access and use the software over the
Internet.

e Storage as a service (STaaS) Providers offer storage space that typically is more
cost-effective than if the user stored the data on his hardware.

e Security as a service (SECaaS) Providers offer access to their security services
including authentication, anti-virus, anti-malware or spyware, intrusion detection,
security event management and others.

e Data as a service (DaaS) Provider offers data storage with additional services to
ensure security and fast access to the data over the Internet.

e Desktop virtualization This concept separates a personal computer desktop envi-
ronment from a physical machine using the client-server model. While the oper-
ating system and applications run on a server, the virtual image is transferred to
the client (user’s computer) in real time. This model requires substantial band-
width.

2 Network Computing Laboratory (NCLab)

Technically, NCLab falls into the SaaS category. It does not use desktop virtualization.
While the server-side is running on a Linux server, the user interface works natively
in the web browser on the client and to some extent it resembles Windows. It will be
called “Desktop” in the following, which should not be confused with the desktop of
the computer or laptop that is used to access NCLab. In principle, any device that has a
web browser can be used to access NCLab. Currently, NCLab has not been optimized
for very small displays though, so accessing it from smart phones is not recommended.
NCLab has been partially optimized for touch interfaces (tablets).

User data is stored on the server using MongoDB, a scalable, high-performance,
open source NoSQL database [2]. The Desktop provides a File Manager that can access
the database and display the user data on the client as files and folders that resemble a
usual file system. NCLab uses a leading commercial cloud provider [3] and part of the
service includes regular database backups. The security of user data is fully handled
by the cloud service provider. Secure EV SSL encrypted communication is used for
sending data to the server and back.

@ Springer

NCLab: Public Computing Laboratory S677

NCLab modules and applications are installed on the server. They include a com-
bination of proprietary software developed by FEMhub Inc. and open source projects
related to scientific computing whose license permits server-side use (i.e., LGPL or
more permissive). NCLab provides access to a limited number of GPL-licensed soft-
wares such as Octave, but in this case the software is not linked to the server-side of
NCLab and instead it is used in standalone batch mode.

3 Python programming

Next let us illustrate the user’s workflow in NCLab using Python programming as an
example. Python [20] is a modern high-level dynamic programming language that is
used frequently in modern scientific computing applications. A free Python program-
ming textbook is provided to NCLab users at [4]. Currently, NCLab provides Python
2.7. After creating a free account and logging in, the user sees a desktop that resembles
a regular computer desktop.

After double-clicking (or tapping) on the Programming icon, a menu of program-
ming languages appears that contains Python. Clicking on Python launches a Python
worksheet. Initially, the worksheet contains a demo script (that can be turned off in
Settings). The demo script can be evaluated by pressing a green arrow button. This is
illustrated in Fig. 1.

Uniiteg Pymon
v Cats sutens heps P @A A

Welcome to Python!

Python i & modern high-evel dynamsc programming language thal is widely
Lned it scieece engineenng. and eter areas. P e sorpt by pressng the
P0en dirow et The ook ot in the upper men. B wil cakulate and deg s
Mandekol fractsl sel. Exploee the o abic in the
socton, This welcome scrpt can be kened off n Sefirgs. Flus. Gate Seckgns hese Bo@ AN

50

Calc

n
¥
€
T
a

.0 by
ivtise = saxit + reros(ih, Wi, dtype = int}
for L in xrange(max}:

L fract

diverge = zhconjiz) » 1292

div now = dlvtriv & (diviise == maxit)

divtineldiv_now] = 1

(I\‘Hul?e 2
return diviies

Brolet B & - B < - T- 5 @ O vawrou P it o A Lime Pytoon 13 M

Fig. 1 NCLab desktop with a Python worksheet that constructs the Mandelbrot fractal

@ Springer

S678 S. M. Schnepp

Pressing the green arrow sends the script to the server. The server assesses the avail-
ability of computing nodes, selects a compute node with largest available computing
resources, and starts a Python engine on the node. The word engine is standard in
the SaaS context, and in this concrete situation it means an instance of the Python
interpreter that runs in a secure environment that is isolated from other processes run-
ning on the node. Hence, one user cannot interfere with processes of any other user or
temper with files other than his own.

After the Python interpreter finishes, the output that may include text and/or images
is sent to the server and from there to the client. The Python engine is kept alive for
some time so that the user does not lose his variables and intermediate results, but it
is terminated when it has been idle for too long or when the user closes the Python
worksheet. The output of the concrete demo script shown above is an image of the
Mandelbrot fractal.

The Python worksheet shown in Fig. 1 contains one descriptive HTML cell and
one input code cell. In reality there can be more of each type and the user is free to
edit them, reorder them, and perform various other operations that we will not discuss
here. Perhaps the one thing worth mentioning is that pressing the green button in the
upper menu will evaluate all code cells in the worksheet. Each code cell also has its
own green arrow button located below it on the left-hand side, that can be used to
evaluate just this particular cell. Programs created in NCLab can be saved using the
File menu of the worksheet, and the file manager can also be used to upload Python
files from the user’s computer.

Since this paper is not meant to substitute the NCLab user’s manual, we will not
discuss other technical details related to working in NCLab. Such information can be
found via links provided on NCLab’s home page or using Help sections of particular
applications. Similarly, we will not discuss Python programming in any more detail.
The important information is that Python programs can be composed in NCLab, or
they can be uploaded and run on a remote server.

In the following we will describe from the user’s perspective modules that are
related to scientific computing and computer simulations.

4 Computing with Python scientific libraries

NCLab provides a comprehensive list of Python scientific computing libraries includ-
ing Scipy [5], Numpy [6], Pylab [7], Matplotlib [8], Sympy [9] and others. Since not
all readers may be familiar with them, let us describe them briefly:

Scipy is an open source library of algorithms and mathematical tools for the
Python programming language. It contains modules for optimization, linear alge-
bra, integration, interpolation, special functions, FFT, signal and image process-
ing, ODE solvers and other tasks common in science and engineering. It has a
similar audience to applications such as Matlab, GNU Octave, and Scilab. For
illustration of how Scipy is used, let us give a few examples related to image
manipulation:

@ Springer

NCLab: Public Computing Laboratory S679

Import libraries
import pylab as pl
from scipy import ndimage, misc

Import the Lena image from Scipy.misc:
L = misc.lena()

Clear screen:
pl.clfO

Display the image:
im = pl.imshow(L, cmap=’hot’)
pl.show()

Cropping:

1x, ly = L.shape

crop_lena = L[1x/4:-1x/4, ly/4:-1ly/4]
pl.imshow(crop_lena, cmap=’hot’)
pl.show()

Vertical flip:

flip_ud_lena = flipud(L)
pl.imshow(flip_ud_lena, cmap=’hot’)
pl.show()

Rotation with reshape:
rotate_lena = ndimage.rotate(L, 45)
pl.imshow(rotate_lena, cmap=’hot’)
pl.show()

Blurring:

blurred_lena = ndimage.gaussian_filter(L, sigma=5)
pl.imshow(blurred_lena, cmap=’hot’)

pl.show()

Sharpening:
filter_blurred_l = ndimage.gaussian_filter(blurred_lena, 1)
alpha = 30
sharpened_lena = blurred_lena + alpha *

(blurred_lena - filter_blurred_1)
pl.imshow(sharpened_lena, cmap=’hot’)
pl.show()

This script has several outputs which are shown in Figs. 2, 3, 4.

@ Springer

S680 S. M. Schnepp

w

00 300 500] 100 00

Fig. 3 Left Flipped from left to right. Right 45° rotation with reshape

100 200 300 400

Fig. 4 Left Blurring via a Gaussian filter. Right Sharpening

Numpy is the fundamental package for scientific computing with Python. It contains
among others a powerful N-dimensional array object, sophisticated (broadcasting)
functions, tools for integrating C/C++ and Fortran code, linear algebra, Fourier trans-
form, and random number capabilities.

@ Springer

NCLab: Public Computing Laboratory S681

The usage of Numpy can be illustrated using a script that performs the fast Fourier
transform (FFT) of a highly oscillatory function

y = sin(200x)

that is perturbed using random fluctuations:

Import libraries:

from random import random

from numpy import linspace, pi, sin

from pylab import plot, clf, legend, show

Define a sine function in (0, 2xpi)
x = linspace(0, 2 * pi, 1000)
y = sin(200%x)

Small random perturbation:
n = len(x)
for i in range(n):

y[i] += random() * 0.2

Plot y(x):

clf ()

plot(x, y, label="y(x)")
legend ()

show ()

FFT y(x):
from scipy.fftpack import fft
y_transformed = fft(y)

Plot y_transformed(x):

clf O

plot(x, y_transformed, label="y_transformed(x)")
legend ()

show ()

The function y(x) is shown in Fig. 5.

The result after performing FFT is shown in Fig. 6.

Pylab is a combination of Python, Numpy, Scipy, Matplotlib, and IPython that
provides a compelling environment for numerical analysis and computation.

@ Springer

S682 S. M. Schnepp

15

Fig. 5 Original function y(x)

200

— ¥y _transformed(x)

150 |

100

R ——

=100

0 1 2 3 4 5 6

Fig. 6 Fourier transform of the function y(x)

Matplotlib is the major Python plotting library which produces publication qual-
ity figures in a variety of hardcopy formats and interactive environments across
platforms.

Last, Sympy is an open source Python library for symbolic mathematics that
aims to become a full-featured computer algebra system (CAS). The usage of
Sympy can be illustrated by solving symbolically a nonlinear ordinary differential
equation

(2= 9)y + yx = x?

@ Springer

NCLab: Public Computing Laboratory S683

The corresponding script has the form

Solve the equation:
A = dsolve((x**2 - 9*diff(y(x), x) + y(x) * x - x*x*2, y(x))

Pretty print the result:

pprint (A)
The output is
________ /x\
/ 2 9*acosh|-|
xx\/ x -9 \3/
Cl + =—mmm—mmm e T
2 2
y(x) = —mmmmmmmmm oo
/2
\/ x -9

5 Computing with GNU Octave

GNU Octave [10] is a high-level programming language for scientific computing
whose syntax is very similar to Matlab. Most Matlab m-files do not require any changes
to run in Octave. The Octave module is part of the Computing module and its usage
is analogous to how Python is used. Users have three ways to work with Octave files
in NCLab:

e Upload existing Matlab/Octave files from their local hard disk.
e Clone Matlab/Octave files from the database of public projects.
e Compose Octave programs from scratch using the Octave worksheet.

The uploaded or cloned files can be further edited in the Octave worksheet. For illus-
tration, let us show a simple Octave/Matlab script that calculates an approximation of
the number 7 by inserting a large number of random points into the unit square and
counting how many also lie in the unit circle:

function y = stochastic_pi(n)
x = rand(n, 1);

y = rand(n, 1);
y =4 % (sum(1 - sign(sqrt(x.”2 + y."2) - 1)) / 2) / n;
endfunction

% Test case:

n = 10000
stochastic_pi(n)

Sample output of this script is

n = 10000
ans = 3.1408

@ Springer

S684 S. M. Schnepp

o o o o
s e s s

Fig. 7 Output of a demo script displaying a real function of two variables

In order to illustrate the plotting capabilities, let us evaluate another simple
Octave/Matlab script that displays a function of two variables:

tx = ty = linspace (-8, 8, 30)’;
[xx, yy] = meshgrid (tx, ty);

r =sqrt (xx .~ 2 +yy .7 2);
tz = sin (r) ./ r;

mesh (tx, ty, tz);

The output is shown in Fig. 7.

The NCLab database of public projects, accessible through the file manager’s
Project menu or through the Octave worksheet’s File menu, contains many Octave
programs for numerical methods courses including the Taylor polynomial, rootfind-
ing, interpolation, approximation, numerical quadrature, solution of systems of linear
and nonlinear algebraic equations, linear and nonlinear regression, solution of ODE
and PDE, etc. Every user can add their own programs.

6 GPU computing with PyCUDA

GPU computing or GPGPU (General Purpose GPU) computing is a computing par-
adigm that combines the use of a GPU (Graphics Processing Unit) with the use of a
CPU to accelerate general-purpose scientific and engineering applications. The devel-
opment of GPU computing was pioneered around 2,000 by Nvidia. Whereas a number
of consumer graphics cards suitable for small to middle-sized problems are available at
very reasonable prices, graphics cards that are powerful enough for advanced scientific
computations are still relatively costly (in the order of thousands of dollars).

NCLab provides several GPU units that can be accessed freely from the PyCUDA
worksheet. Here PyCUDA [11] stands for Python wrappers for CUDA, Nvidia’s pro-
gramming language for GPU units. PyCUDA was created by Andreas Klockner around
2009, and since then it was expanded with the help of many contributors.

@ Springer

NCLab: Public Computing Laboratory S685

The database of public projects in NCLab contains around 30 tutorial projects that
every user can clone into his/her account and run instantly. These projects are based on
the official PyCUDA tutorial [11] and they were included in NCLab with the author’s
consent.

7 Computational graph theory with the NetworkX library

NetworkX [12] is a Python-based software package for the creation, manipulation,
and study of the structure, dynamics, and functions of graphs and complex networks,
developed by Aric Hagberg [13] at the Los Alamos National Laboratory. Tutorial and
many examples can be found on the project home page. Here, let us illustrate its usage
on a rather simple example.

We generate a random graph with 1,000 nodes and 5,000 edges, and calculate the
eigenvalues of the generalized Laplacian:

Import libraries:
import numpy.linalg
eigenvalues = numpy.linalg.eigvals
from pylab import *

Define number of nodes and edges:
n = 1000

m = 5000

Construct random graph:

G = gnm_random_graph(n, m)

Create the generalized Laplacian:
L = generalized_laplacian(G)

Calculate eigenvalues:

e = eigenvalues(L)

print "Largest eigenvalue:", max(e)
print "Smallest eigenvalue:", min(e)

Histogram with 100 bins:
hist(e,bins = 100)

Eigenvalues between O and 2:
x1im(0, 2)

Display the graph:
show ()

@ Springer

S686 S. M. Schnepp

18

16

14

12

10

2

8o

0.5 10 15 2.0

Fig. 8 Calculation of eigenvalues of the generalized Laplacian of a random graph with 1,000 nodes and
5,000 edges

The output of this script has two parts. First the text:

Largest eigenvalue: 1.5981610973873812
Smallest eigenvalue: -1.0896791983286371e-16

Then the graphics (Fig. 8):

8 Computational geometry with the PLaSM library

PLaSM [14] stands for Programming Language of Solid Modeling. This simple and
elegant scripting language along with an open source collection of powerful multi-
dimensional computational geometry algorithms behind it was created by A. Paoluzzi
et al. [15] at the University of Rome in Italy. It allows the user to create many types
of simple objects, transform them using scaling, rotations and translations, perform
intersections and unions of objects, subtract objects from each other, and define many
types of curved surfaces. A free open source textbook on PLaSM is available as
well [16].

The usage of PLaSM can be illustrated on the following sample script that cre-
ates a cube of size 2, and gradually subtracts from it three cylinders of radius
0.75 and height 4 that are first translated and rotated into the three main axial
directions:

@ Springer

NCLab: Public Computing Laboratory S687

Create a cube of size 2:
¢ = CUBE(2)

Create a cylinder of radius 0.75 and height 4:
cyl = CYLINDER(0.75, 4)

Translate the cube by -1 in each axial direction:
c =T(, -1, -1, -1)

Translate the cylinder by -2 in the z-direction:
cyl = T(cyl, 0, 0, -2)

Subtract cylinder from the cube:
¢ = DIFF(c, cyl)

Rotate the cylinder by 90 degrees about the x-axis:
cyl = R(cyl, 1, PI/2)

Subtract the cylinder from the cube:
¢ = DIFF(c, cyl)

Rotate the cylinder by 90 degrees about the z-axis:
cyl = R(cyl, 3, PI/2)

Subtract the cylinder from the cube:
¢ = DIFF(c, cyl)

View the result:
lab.view(c)

After understanding this minimum, the reader is already capable of creating geome-
tries that do not include advanced curved surfaces such as splines or Bézier curves. The
commands are fairly self-explanatory but let us add a few comments. The command:

¢ = CUBE(2)
creates a cube c of edge length 2. PLaSM uses symbols for objects in order to allow
performing operations with them. In fact, these are variables as one knows them from
computer programming. Command
c =T(c, x, ¥, 2)

translates object ¢ by a 3D vector (x, vy, z).Command

cyl = R(cyl, m, a)

@ Springer

S688 S. M. Schnepp

Fig. 9 Cube after subtracting three cylinders in the main axial directions

Fig. 10 3D mesh created by CUBIT using the STL file corresponding to Fig. 9

rotates object cy1l about the m-th axis by angle a. Herem = 1 means the x-axis etc.

Last, command
¢ = DIFF(c, cyl)

@ Springer

NCLab: Public Computing Laboratory S689

Fig. 11 3D print of the geometry shown in Fig. 9

subtracts object cy1 from object c. Of course one can use arbitrary names to denote
objects and the resulting object could be called differently from c. PLaSM also pro-
vides other standard binary operations INTERSECTION, UNION and XOR.

The output of the above script is shown in Fig. 9.

NCLab makes it possible to export surface triangulations as STL files. These can
be imported into mainstream mesh generation packages and used for surface and
volumetric mesh generation. Figure 10 shows the corresponding hexahedral mesh
generated using CUBIT.

STL files are also accepted by most 3D printers. Figure 11 presents such a print
corresponding to Fig. 9.

9 Solving PDE with the Hermes library

Hermes (Higher-order modular finite element system) [17] based on [18] is an open
source C++ library for rapid development of adaptive hp-FEM / hp-DG solvers. Novel
hp-adaptivity algorithms help solve a large variety of problems ranging from ODE
and stationary linear PDE to complex time-dependent nonlinear multiphysics PDE
systems.

Hermes is used in NCLab via its Python wrappers. The usage of the wrappers is
straightforward as there are only a few naming conventions that relate the names of
C++ classes, functions, and variables to their Python counterparts. About a dozen

@ Springer

S690

S. M. Schnepp

Fig. 12 Frame geometry

Fig. 13 Mesh generated using triangle

Fig. 14 Von Mises stresses (displacement is magnified for visualization purposes)

Toa 160 0000

SIS8G35 1150

00T 10 6300

2000485 2450

1261 2600

tutorial examples can be be cloned from the database. In Appendix A at the end of this
article we show a sample program that employs Hermes to define equations of linear

elasticity and solve an example problem.

@ Springer

NCLab: Public Computing Laboratory S691

10 Interactive graphical FEM modules

Recently, three entry-level interactive graphical modules have been introduced into
NCLab. They can deal with problems in electrostatics with fixed potential (Dirichlet)
and charge density (Neumann) conditions, linear elasticity with fixed displacement
(Dirichlet) and surface force (Neumann) conditions, and general linear second-order
equations of the form

with constant coefficients and Dirichlet, Neumann and Newton boundary conditions.
These modules employ higher-order finite elements and curvilinear elements, but they
are not capable of automatic adaptivity yet.

For illustration, let us use the linear elasticity module to calculate displacements
and stresses in a 2D steel frame of outer measures a x b where @ = 1 m and b =
0.5 m, and thickness 2 = 0.1 m. The frame is fixed on the two bottom edges and
loaded with a vertical force F = 10° N on the top edge. The geometry shown in
Fig. 12 was created using the interactive geometry editor of the linear elasticity
module.

Part of the geometry definition is the assignment of markers for boundary edges
where boundary conditions will be prescribed. After the geometry is finished, it is sent
to the server for mesh generation. The mesh generated using Triangle [19] is shown
in Fig. 13.

Last, after selecting equation parameters and associate concrete boundary condi-
tions with the previously defined edge markers, one sends the data to the server for
processing. The mesh shown in Fig. 13 was twice uniformly refined and equipped
with quadratic elements. The number of degrees of freedom (DOF) for this compu-
tation was 39,774. The resulting Von Mises stresses in the structure are shown in
Fig. 14.

11 Sample Hermes program: linear elasticity

The following program uses the Hermes library via its Python wrappers in NCLab
to define weak forms for the Lamé equations of linear elasticity and solve a sam-
ple problem. The XML code representing the finite element mesh is left out. The
file is part of the tutorial example A-linear/08-system in the repository
hpfem/hermes-tutorial on Github!. All other steps of the algorithm are
explained via comments in the code below:

1 https://github.com/hpfem/hermes-tutorial.git.

@ Springer

https://github.com/hpfem/hermes-tutorial.git

S692

S. M. Schnepp

Initial polynomial degree.
P_INIT = 6

Problem parameters.

E = 200e9
nu = 0.3

rho 8000.0
gl = -9.81
f0 = 0.0

f1 = 8ed

Import Hermes.
import hermes_common
import hermes2d

Create custom elasticity forms.
class PyCustomWeakFormElasticity(hermes2d.PyCustomWeakFormReal) :

self.

def init__(self, E, nu, rho_g, surface_force_bdy, f0, f1):

Specify number of equationms.
super (2)
Lame constants.

lambda = (E * nu) / ((1 + nu) * (1 - 2+%nu))

mu =

self

self.
self.

self.
self.

self

self

self.
self.

E / (2%x(1 + nu))
Add weak forms for the Jacobian matrix. Here (0, 0) means
the upper left block, (0, 1) the upper right cormer, etc.

.add_matrix_form(hermes2d.PyDefaultJacobianElasticity_0_0(0, O, lambda, mu))
self.

add_matrix_form(hermes2d.PyDefaultJacobianElasticity_0_1(0, 1, lambda, mu))
add_matrix_form(hermes2d.PyDefaultJacobianElasticity_1_0(1, O, lambda, mu))
add_matrix_form(hermes2d.PyDefaultJacobianElasticity_1_1(1, 1, lambda, mu))

Add default vector forms for the residual. These correspond to

four blocks in the Jacobian matrix.
add_vector_form(hermes2d.PyDefaultResidualElasticity_0_0(0, lambda,
add_vector_form(hermes2d.PyDefaultResidualElasticity_0_1(0, lambda,

.add_vector_form(hermes2d.PyDefaultResidualElasticity_1_0(1, lambda,
self.

add_vector_form(hermes2d.PyDefaultResidualElasticity_1_1(1, lambda,

the

mu))
mu))
mu))
mu))

Add remaining volumetric and surface vector forms. Here ’0’ means the

first equation, ’1’ the second.

.add_vector_form_surf (hermes2d.PyDefaultVectorFormSurf (0, -fO,

surface_force_bdy))
add_vector_form(hermes2d.PyDefaultVectorFormVol(1, -rho_g))
add_vector_form_surf (hermes2d.PyDefaultVectorFormSurf (1, -f1,

surface_force_bdy))

Initialize mesh.
mesh = hermes2d.PyMesh()

Initialize mesh reader.
reader = hermes2d.PyMeshReaderH2DXML ()

Load the mesh.
reader.load_stream(’SEE TUTORIAL FOR XML CODE’, mesh)

@ Springer

NCLab: Public Computing Laboratory S693

One level of uniform mesh refinements.
mesh.refine_all_elements()

Zero displacement, to be applied to both displacement
components.
bc = hermes2d.PyDefaultEssentialBCConstReal("Bottom", 0.0)

Container to pass BCs into Space.
bcs = hermes2d.PyEssentialBCsReal(bc)

Spaces for horizontal and vertical displacement

components.

ul_space = hermes2d.PyH1SpaceReal(mesh, bcs, P_INIT)
u2_space = hermes2d.PyH1SpaceReal (mesh, bcs, P_INIT)
ndof = ul_space.get_num_dofs() + u2_space.get_num_dofs()
print "Number of DOF:", ndof

Initialize weak formulation.
Here "Top" is the surface force boundary.
wf = PyCustomWeakFormElasticity(E, nu, rho*gl, "Top", fO0, f1)

Discrete problem.
dp = hermes2d.PyDiscreteProblemReal (wf, [ul_space, u2_space])

Initialize Newton solver.
newton = hermes2d.PyNewtonSolverReal (dp)

Create zero coefficient vector.
coef = []
for i in range(ndof): coef.append(0)

Solve the problem using the Newton’s method.
newton.solve(coef)

Initialize solutions.

ul_solution = hermes2d.PySolutionReal()

u2_solution = hermes2d.PySolutionReal()

Translate resulting coefficient into Solutions.
hermes2d.PySolutionReal() .vector_to_solution(newton.get_sln_vector(), \

[ul_space, u2_space], [ul_solution, u2_solution])

Initialize Linearizer.
lin = hermes2d.PyLinearizer()

Linearize solution and save on server.
lab.writeVTK(’~/vtk’, lin.save_solution_vtk_to_stream(ul_solution, ’sln’))

Show solution in Postprocessor.
lab.postprocessor(dict (solution = lab.readVTK(’~/vtk’)))

The output of the script is shown in Fig. 15.

@ Springer

S694 S. M. Schnepp

z.21e405 | S

[

.99e+05 | |

[

77e+05

-

.55e+05

-

.33e+05 |
1.1e+05 /

8.83e404

6.63e+04

4.42e+04 e [

2.21e+04 i \

25

Fig. 15 Output of the linear elasticity example—von Mises stress

References

14.
15.

16.

17.

18.

19.

20.

. Cloud computing: Wikipedia page http://en.wikipedia.org/wiki/Cloud_computing. Retrieved on Sep-

tember 15, 2012

. Mongo Database: http://www.mongodb.org/. Retrieved on September 15, 2012
. Linode: http://www.linode.com/. Retrieved on September 15, 2012
. Solin P et al (2012) Introduction to Python programming. In: Open source textbook. http://femhub.

com/textbook-python. Retrieved on September 15, 2012

. Scipy official website: http://www.scipy.org/. Retrieved on September 15, 2012

. Numpy official website: http://numpy.scipy.org/. Retrieved on September 15, 2012

. Pylab official website: http://www.scipy.org/PyLab. Retrieved on September 15, 2012

. Matplotlib official website: http://matplotlib.org/. Retrieved on September 15, 2012

. Sympy official website: http://www.sympy.org/. Retrieved on September 15, 2012

. GNU Octave http://www.gnu.org/software/octave/. Retrieved on September 15, 2012

. PyCUDA documentation page: http://documen.tician.de/pycuda/. Retrieved on September 15, 2012

. NetworkX official website: http://networkx.lanl.gov/. Retrieved on September 15, 2012

. Hagberg AA, Schult DA, Swart PJ (2008) Exploring network structure, dynamics, and function using

NetworkX. In: Proceedings of the 7th Python in Science Conference (SciPy 2008), pp 1115. Pasadena,
CA, USA, Aug 2008

PLaSM: Wikipedia page http://en.wikipedia.org/wiki/PLaSM. Retrieved on September 15, 2012
Paoluzzi A (2003) Geometric programming for computer aided design. Wiley, New York. ISBN
0471899429

Solin P et al (2012) Solid modeling with PLaSM. In: Open source textbook. http://femhub.com/
textbook-cad. Retrieved on September 15, 2012

Hermes: Higher-order modular finite element system. http://hpfem.org/hermes. Retrieved on Septem-
ber 15,2012

Solin P, Segeth K, Dolezel I (2003) Higher-Order Finite Element Methods, Chapman & Hall/CRC
Press, New York

Shewchuk JR (1996) Triangle: Engineering a 2D quality mesh generator and Delaunay Triangulator. In:
Lin MC, Manocha D (eds) Applied computational geometry: towards geometric engineering. Lecture
notes in computer science, vol 1148, pp 203-222. Springer, Berlin

Python programming language official website: http://www.python.org/. Retrieved on September 15,
2012

@ Springer

http://en.wikipedia.org/wiki/Cloud_computing
http://www.mongodb.org/
http://www.linode.com/
http://femhub.com/textbook-python
http://femhub.com/textbook-python
http://www.scipy.org/
http://numpy.scipy.org/
http://www.scipy.org/PyLab
http://matplotlib.org/
http://www.sympy.org/
http://www.gnu.org/software/octave/
http://documen.tician.de/pycuda/
http://networkx.lanl.gov/
http://en.wikipedia.org/wiki/PLaSM
http://femhub.com/textbook-cad
http://femhub.com/textbook-cad
http://hpfem.org/hermes
http://www.python.org/

	NCLab: Public Computing Laboratory
	Abstract
	1 Basic terminology of cloud computing
	2 Network Computing Laboratory (NCLab)
	3 Python programming
	4 Computing with Python scientific libraries
	5 Computing with GNU Octave
	6 GPU computing with PyCUDA
	7 Computational graph theory with the NetworkX library
	8 Computational geometry with the PLaSM library
	9 Solving PDE with the Hermes library
	10 Interactive graphical FEM modules
	11 Sample Hermes program: linear elasticity
	References

