
Self-Paced, Instructor-Assisted Approach to
Teaching Python Programming

Pavel Solin and Alexander Freyer

Abstract. We present a novel self-paced, instructor-assisted approach
to teaching Python programming in a college classroom environment.
Instead of listening to a lecture and doing homework on their own later,
students work actively 100% of the time, using an advanced interac-
tive learning platform combined with real-time individual assistance of
their instructor. Instead of lecturing, the instructor walks through the
classroom and assists students individually. This makes a huge positive
difference for the students, and it also allows the instructor to under-
stand much better how each student performs and where they need
help. After numerous years of using this approach, we are convinced
that nothing can replace a one-to-one interaction between the student
and his/her instructor. Unfortunately, traditional classroom lectures are
not consistent with this teaching style. On the contrary, the mostly uni-
directional flow of information from the instructor to the class effectively
shields the instructor from interacting with the students. We describe
various aspects of the self-paced, instructor-assisted method and show
that it has a major positive impact on the students. Students find it
extremely helpful being able to digest the material at their own pace.
They also get a lot more practice compared to the standard lecture +
homework model, develop good programming habits, and become skilled
and experienced programmers. This method makes students better in-
dependent learners, problem solvers, and communicators. Our findings
are based on 10+ years of teaching Python programming courses to
diverse audiences in this way. Results of a sample student survey and
student testimonials are presented.

Mathematics Subject Classification (2010). Primary 97U50; Secondary
97B40, 97D40.

Keywords. Computer programming education, Python, self-paced course,
learning by doing, NCLab.

2 Pavel Solin and Alexander Freyer

1. Introduction

In the era of Industry 4.0, automation, and big data, computer programming
is an essential career skill. The findings of this study are applicable to teach-
ing computer programming in general, but we focus specifically on Python
which crosses the borders of traditional Computer Science and reaches into
many other areas including Data Analytics and Data Science, Artificial Intel-
ligence, Machine Learning, Robotics, Advanced Manufacturing, Engineering,
Sciences, Business, Finance, Healthcare, to mention just a few.

Computer programming currently is among the most sought-after job
skills in the U.S. job market, given the shortage of qualified applicants to fill
available Computer Science-related jobs. The U.S. Bureau of Labor Statis-
tics (BLS) projects that computer and IT-related jobs will grow 11% between
2019 and 2029, which is much faster than national job growth overall. Ac-
cording to a recent Gallup poll [12], 63% of White students, 60% of Black
students, 61% of Hispanic students, and 71% of Asian students are interested
in pursuing a career in Computer Science.

However, computer programming education still has significant issues
which are heavily discussed in the literature (see, e.g., [2, 5, 11, 15, 16, 18,
19, 24, 29, 30, 31, 33, 36, 38, 40] and the references therein). Research shows
that failure and dropout rates are high in both introductory and advanced
computer programming courses [24, 40], as well as that many students who
finish the courses successfully do not possess sufficient and expected level of
programming skill [11]. These problems are usually attributed to:

1. Abstract nature of computer programming courses [18].
2. Challenges related to combining syntax and logic [33].
3. Lack of practice [16].
4. Lack of motivation of students to learn computer programming [2].

To combat problems 1 and 2, a number of simplified visual educational pro-
gramming languages have been created such as Logo [26], Karel the Robot
[25, 34] or Scratch [32], but research shows that programming novices have
problems with learning even those [18]. Some authors go as far as to conclude
that no programming language is suitable, and cannot be suitable, for novice
programmers [33].

On a more positive note, [38] shows that practice is a preferred way
of learning computer programming for many students and that it increases
student success. [17] finds that motivation is one of the most important factors
in student success. [3] proposes that constructivism should be used when
designing computer programming courses, meaning that the learner should be
taken on an active path where s/he is deeply involved in the learning process
and s/he also builds new knowledge on top of existing knowledge. [10] argues
that computer programming courses should be designed to accommodate
individual needs and learning preferences of students.

We also agree with [38] that practice is key when learning computer
programming, with [17] that motivating students is crucial, with [3] that con-
structivism should be used when designing computer programming courses,

Self-Paced, Instructor-Assisted Approach to Teaching Python 3

and with [10] that individual needs and learning preferences of students must
be taken into account. We also agree with [18] that, unfortunately, traditional
ways of teaching computer programming do not work well.

Our findings presented in this paper are very much consistent with the
last two paragraphs. Nothing can replace a one-to-one interaction between
the student and his/her instructor who can not only help with technical ques-
tions but also do a much better job understanding individual needs of the
students, and motivating them. This is practically impossible in the tradi-
tional classroom setting, but it can be achieved with the help of an advanced
interactive learning platform such as NCLab [21].

2. Outline

Section 3 explains why neither traditional lectures nor the flipped classroom
model are suitable for teaching computer programming. Section 4 presents a
self-paced approach where students learn by doing, at their own pace, getting
significantly more one-to-one interaction with their instructor compared to
traditional lectures.

A prerequisite for this approach is the availability of an interactive
learning platform which provides carefully designed short tutorials, exam-
ples, exercises, autograded practical tasks, quizzes, and discussions. This is
discussed in Section 5. The software platform must be able to check the stu-
dent’s solutions and answers in real-time and provide instant feedback, help
and guidance as explained in Section 6.

Section 7 describes another important component of the learning plat-
form: a real-time student progress monitoring dashboard that is available to
the instructor. Sections 8 and 9 present the results of a sample student survey
and representative student testimonials.

In this study we use NCLab (Network Computing Laboratory) [21] but
any other software platform with the above traits would work as well. In Ap-
pendix A the second author describes his personal experience with learning
programming in a self-paced way, and compares it to the traditional instruc-
tion at his University. Appendix B briefly presents the self-paced Python
curriculum in NCLab, and Appendix C explains in detail how Python exer-
cises are graded on a remote cloud server.

3. Lectures, Homework, and Flipped Classroom

Lectures have been the traditional means of passing on knowledge from in-
structors to students since the founding of Western universities in the middle
of the 11th century. Much has changed since then though, in particular the
access to information through the Internet and other media. Yet our educa-
tional system today still teaches students to sit, listen, take notes, and wait
for somebody to tell them what they need to know. This does not make them
independent learners and problem solvers though. Instead, students should

4 Pavel Solin and Alexander Freyer

become active learners who can find and filter new information. The instruc-
tor is still very much needed in this process, but s/he does not necessarily
have to serve as the primary medium which delivers elementary information
to students.

Speaking about computer programming in particular, this is a skill,
and any skill requires many hours of hard work and practice [16]. However,
sitting in a lecture for 50, 75 or even 90 minutes, listening to an instructor,
and taking notes does not invite students to be active, and it definitely does
not give them an opportunity to practice what they are learning in real time.

An overwhelming number of authors agree that student attention during
lectures tends to wane after approximately 10–15 minutes (see [4, 9, 14, 39,
20] and the references therein). These exact numbers and their origin are
sometimes questioned [6], but there is other heuristic evidence suggesting
that people’s attention span is limited. For instance, TED talks have an 18
minute limit, based on the notion that 18 minutes is long enough to have a
“serious” presentation but short enough to hold a person’s attention.

A traditional lecture typically introduces several new concepts, but the
students do not have a chance to practice and master one before being ex-
posed to the next. Even worse, often the next concept builds upon the pre-
vious one, which resembles building a second floor of a house with the first
floor not being there yet. Achieving mastery of the concepts, if at all, hap-
pens later at home, with no instructor to be there when the student actually
needs help. This not only leads to frustration and the development of bad
programming habits, but students often seek help online, where a number of
commercial services such as [7, 8] gladly ”help them” for a small subscription
fee, by facilitating access to homework solutions uploaded by their peers.

Another drawback of traditional lectures is uniform pacing. The instruc-
tor sets a pace which works best for most students, but for some students
it will always be too fast and for some others too slow. This leads to the
former group getting lost and the latter getting bored. The instructor must
present a given amount of material in the given timeframe (typically there are
about 20 lectures per semester), which leaves almost no time for spontaneous
instructor-student interaction. In fact, the uni-directional flow of information
from the instructor to the students actively shields the instructor from such
interactions.

Let’s conclude this Section with mentioning the flipped classroom [13,
37]. Flipped classroom is structured around the idea that lecture or direct
instruction is not the best use of class time. Instead, students learn on their
own before class, freeing class time for activities that involve higher order
thinking. However, by ”learning on their own before class” most authors
mean watching pre-recorded video lectures, which by itself is not the best way
to learn computer programming. Learning practical skills such as computer
programming requires hands-on practice and problem solving. While learning,
students very much benefit from real-time access to their instructor, which
studying in advance at home does not provide. Also, in our experience, group

Self-Paced, Instructor-Assisted Approach to Teaching Python 5

activities such as class discussions are not the best for learning computer
programming.

4. Self-Paced Learning by Doing

Frustrated by experiencing the problems described in the previous Section,
around 2010 we started to teach computer programming using a self-paced
approach where students learn at their own pace, by doing rather than listen-
ing to someone or watching videos. Not having to lecture frees the instructor’s
time which s/he can use to interact with students and help them individu-
ally. We found this active learning approach to be enormously successful with
every audience including elementary school kids, middle and high school stu-
dents, college students, and even working adults, both with and without prior
programming experience.

In 2019 we started to use the self-paced approach to teaching college-
level Linear Algebra which is a much more theoretical and abstract subject.
To our surprise, the experiment was enormously successful again, with stu-
dents achieving up to 20% better overall scores and consistently reporting
that this is how they would like to learn in other math courses as well [35].

Carefully designed interactive course materials play a critical role in the
self-paced, instructor-assisted learning model. Let’s therefore discuss them
next.

5. Interactive Course Materials

The interactive course materials are split into individual lessons, where each
lesson corresponds to one traditional classroom lecture plus the correspond-
ing homework. A lesson typically covers several new concepts. These concepts
are clearly separated from each other, so that students only deal with one
new concept at a time. Importantly, the software platform does not allow
students to move on to the next concept until they have proved mastery of
the current one. Each lesson includes the following components:

1. Short, bite-sized tutorials presenting one concept at a time.
2. Live examples for the students can tweak and experiment with.
3. Graded exercises whose score does not count towards the course score.
4. Graded tasks whose score counts towards the course score.
5. Both the graded exercises and tasks come with hints and discussions.
6. Side-by-side comparisons of the student’s code and the master solution.
7. Quizzes which provide detailed explanations for incorrect answers.

5.1. Tutorials

Every lesson begins with a short, bite-sized tutorial which includes text, code,
and/or illustrations. NCLab does not use video tutorials, because we believe

6 Pavel Solin and Alexander Freyer

that our brain is in a passive state when watching a video, and this is not
consistent with our active approach to learning. Tutorials usually contain a
review of previous topics, because we learned that students appreciate that
very much. Who knows the material well can simply skip the review, but for
other students it can be extremely helpful. This is completely different from
a traditional classroom lecture where, when the instructor does a review, the
entire class must listen to it.

5.2. Examples

In our tutorials we use examples which are ”live” in the sense that students
open them, run code, and see the results in real time. They are guided to
tweak the code, try various things, until they become comfortable with the
concept that the example demostrates. Examples are not autograded, mean-
ing that there is no feedback telling the students whether or not what they
did was correct. For this there are Exercises.

5.3. Exercises

Exercises are the next step after live examples. Students are given tasks which
are designed for them to apply the new concept they just learned. Exercises
are autograded, meaning that the students see instantly if their solution is
correct or not. If their solution is incorrect, then they are helped to identify
and fix the problem. Exercises do not contribute to the overall course score.

When writing a program, students can run it as many times as they
need without penalties. The grading only occurs when they decide that their
program s final, and submit it for grading. If the grader discovers problems
with the solution, the students are given feedback, and asked to correct their
work. If the program passes the grader, the student is allowed to proceed.

5.4. Tasks

When students successfully solve the exercises, and build enough confidence
in their understanding of the new concept, they proceed to the next task.
Tasks are similar to exercises, they are also graded by the software, but the
score counts towards the students’ total course score. Sometimes multiple
tasks are queued before a new concept is introduced.

5.5. Hints

Every task comes with a hint which students can use if they are not sure how
to solve the task. Using a hint costs them 3% of the score for the task. If the
hint is not sufficient, and if the instructor is not around at the moment (for
instance when the student works in the evening at home), then students can
use a Fast Forward (FF) button to proceed. The instructor sees the usage of
hints and the FF button, and can intervene if there is too much of it. We will
talk about student progress monitoring in more detail in Section 7.

Self-Paced, Instructor-Assisted Approach to Teaching Python 7

5.6. Discussions and Side-by-Side Code Comparisons

After completing each practical task, students see a side-by-side comparison
of their code with the master solution. This allows them to get used to correct
code formatting, which is something that they often are not able to develop
on their own. If their solution differs from the master solution, usually it is
because their solution is sub-optimal. If there is more than one way to solve
the task, there is a post-solution discussion where various advantages and
disadvantages of the different solutions are compared. Students consistently
report that they find the side-by-side code comparisons and the discussions
extremely helpful.

5.7. Quizzes

Each lesson includes one of more quizzes whose role is to ensure that students
read the tutorials carefully, and learn the underlying theoretical concepts
along with the practical skills. The quizzes include free answer questions, mul-
tiple choice questions (where only one option is correct), checkboxes (where
none, one, or multiple options may be correct), code cells where students are
asked to complete missing code segments, and more. A detailed description
of quizzes is given in our Linear Algebra paper [35].

Quizzes can be retaken after 12 hours, and the better score counts. The
purpose of this feature is to motivate students to return to the material,
and learn what they missed. During the retake, students are presented with
similar but not the same questions.

6. Importance of Real-Time Feedback

The importance of feedback in the learning process cannot be stressed enough.
Students do not learn when sitting in a lecture and listening to an instructor.
They do not learn when watching a video or reading a tutorial. While doing
this, they are merely just trying to store as much of the new information as
possible, hoping to somehow make sense of it later. Even when solving a task,
they do not learn until they receive a confirmation that their solution was
correct.

The ”magical moment” occurs when they receive feedback. In the best
case scenario this feedback comes from another human being directly - the
instructor - but this is extremely rare in a college-level classroom environ-
ment. The validation also can come from an instructor in the form of a graded
homework, but this typically takes too much time. A software platform on
the other hand can provide an instant feedback which either tells the stu-
dent that their solution is incorrect and why, or that their solution is correct.
Only when they succeed and have their success validated, the students gain
the confidence they need for the new concept to fall in place.

8 Pavel Solin and Alexander Freyer

7. Real-Time Progress Monitoring

In order to keep track of the students’ progress, the instructor must have
access to a dashboard which displays student progress data in real time. In
NCLab, the instructor dashboard provides three levels of detail:

• Class level: This is an overview of the entire class which shows the
progress of all students visually, along with other useful information
such as when each student was last active.

• Student level: When clicking/tapping on a particular student, the in-
structor can view all graded tasks and quizzes solved by the student
including where they used hints, the Fast Forward button, etc.

• Task level: When clicking/tapping on a particular graded task of quiz,
the instructor can see how much time the student spent solving the
task, how many attempts they needed, and all versions of their code
(whenever the student runs their code, a copy is stored in the instructor’s
dashboard). If the student has retaken a quiz, the instructor can see
where they made mistakes in each submission.

8. Results of a Student Survey

Below we present a sample survey of 27 students from the Spring 2021 se-
mester.

What is your overall level of satisfaction with the course?
5 = very satisfied, 4 = more than satisfied, 3 = satisfied, 2 = partly, 1 = not
at all

5 xxxxxxxxxxxxxxxxxxxxxx
4 xxxxx
3
2
1

How would you rate the difficulty of the material?
5 = very difficult, 4 = difficult, 3 = just right, 2 = easy, 1 = very easy

5
4 xxxxx
3 xxxxxxxxxxxxxxxxxxxx
2 xx
1

How do you compare self-paced learning by doing (this course) vs. traditional
classroom instruction (lectures + homework)?
5 = the self-paced course was much more productive, 4 = the self-paced course

Self-Paced, Instructor-Assisted Approach to Teaching Python 9

was somewhat more productive, 3 = the experiences are about equal, 2 = tradi-
tional lectured courses are somewhat more productive, 1 = traditional lectured
courses are much more productive

5 xxxxxxxxxxxxxxxxxxxxxxxx
4 xx
3 x
2
1

In other courses you take, would you prefer to learn by doing at your own
pace like in this course, or using the traditional lecture + homework format?
5 = strongly prefer the self-paced learning by doing used in this course, 4
= somewhat prefer the self-paced learning by doing used in this course, 3 =
no preference, 2 = somewhat prefer traditional lectures + homework, 1 =
strongly prefer traditional lectures + homework

5 xxxxxxxxxxxxxxxxxxxxxxxxx
4 xx
3
2
1

9. Representative Student Testimonials

”This class was extraordinary. [Instructor’s] use of NCLab helped me to actu-
ally learn and understand the applications of Python, rather than memorizing
and regurgitating code. It let me learn by doing, making mistakes, and pre-
senting everything in a very approachable way. I feel like I could adequately
use basic Python in a job and I am very grateful to have learned it in such a
hands on, low stress way.”

”[Instructor] and the NCLab platform are so effective at teaching various
subjects in math and data. I’ve taken linear algebra and Python, and feel like
I’ve retained more knowledge on these classes then any other I’ve taken.”

”This course is very well designed and makes getting help for yourself easy,
but [Instructor] is also always available to help and is happy to listen to and
work through your issues! He has designed the course exceptionally well.”

”I would not have changed anything about this class, it was perfect in pre-
senting totally new material in a way none of my CS classes have ever been
able to teach it.”

10 Pavel Solin and Alexander Freyer

”This course is the best self directed course I have ever taken. There are built
in features that make it easy to solve your own issues when you need, but
also explains the topics well enough for you to have a strong foundational
knowledge of the material that make getting outside help easy. It also pro-
vides access to fur her material if you want to further your own knowledge.”

”I loved the class format. If I weren’t graduating I would have taken SQL with
NCLab next semester. I really enjoy the fact that this format allows us to fit
the course work into our busy schedules whenever is best, including week-
ends or late nights. I really wished that more CS/Math classes at [University]
would have been this same way, it would have created a lot less stress. Also
asking for help on a problem was easy due to the professor having weekly of-
fice hours and also being open to answering questions through email. Lastly,
some of the students at [University] also work and have extracurriculars that
we need to juggle on top of school work. This format really helps with bringing
flexibility to our schedule by allowing us to work during the day or fulfill our
internship hours throughout the week more easily.”

”I really enjoyed the course for a few reasons: I liked how it incrementally
built on previous sections and it helped me learn by doing. I wasn’t necessar-
ily unsuccessful in previous CS classes I have taken that were lecture based,
but I got very frustrated and did not have easy access to help. They were
discouraging and I felt like I didn’t learn anything and really couldn’t be ex-
pected to actually solve a problem using C or C++. In the NCLab Python
course, I only had to reach out for help a handful of times and it was very
empowering to be able to solve a problem on my own and actually have a true
understanding of why my solutions were correct. I recently took geography
416 where I learned R, but I didn’t actually learn R, I learned how to copy
and paste code from lecture and tinker until it worked. This class was totally
different, I feel like I could actually use Python in a job and be proficient
from day 1. Another reason why I liked this class is because I have a chronic
illness and taking a self paced course took so much stress away. I could work
on it when I felt well, but there was no pressure to attend a lecture or study
for an exam. Accessibility is a huge problem at [University], and just having
this one class that I didn’t have to worry about was so positive for my mental
health. I didn’t have to worry about finding a ride to and from school, I didn’t
have to worry about needing a bathroom break during class, I didn’t have to
find a note taker to revisit material, I could repeat a section as many times
as I needed to if I couldn’t remember a previous topic. Taking this class was
one of the best decisions I made, and I have recommended it to many peo-
ple because I got so much out of it. Thanks for designing an awesome course.”

”The NCLab Python course taught me more than I’ve learned in any other
class. The ability to learn by doing helped me out so much since you basi-
cally have to write different queries to pass every section and every section

Self-Paced, Instructor-Assisted Approach to Teaching Python 11

builds upon one another and at the end you get a final task that puts it all
together. Python is a skill that employers are in need of so I really appreciate
the certificate at the end of each section for me to put in my resume. Highly
recommended.”

”I wish more courses were offered with a self paced format. I found that I am
able to challenge myself more and learn more effectively from this method.”

”I really enjoyed this course and would absolutely take any similarly format-
ted courses available. Thanks for the great semester!”

”For computer science courses I greatly preferred the self-paced format of this
course. I also appreciated the option to reach out for help and feedback. How-
ever, the help within the course was extremely helpful in itself. I loved how I
could truly format my schedule in a way that I could continue my growth and
learning while also making it to the other duties in my life.”

”The course is going great! I’ve been through about seven or eight DataCamp
courses for learning R but feel I did not retain the information very well,
potentially because they are not very challenging. With your course, the prob-
lems we do at the end of each lesson are challenging enough that I feel I retain
the concepts very well. So far, very much enjoying the course!”

Appendix A. Traditional Instruction vs. Self-Paced Learning
By Doing From a Student’s Point of View

My name is Alexander Freyer, and I am studying medical informatics/com-
puter science at the University of Lübeck in Germany. This year, I took a
one-semester break from my university study to expand my Python skills
with the help of NCLab’s Python Developer career training. I decided to do
this because good knowledge of Python is essential for my future success,
and I felt that my university was not giving me those skills. I am grateful for
this opportunity to discuss how my experience with the NCLab’s self-paced
teaching method compares to my university studies.

Earlier this year, I was preparing for my winter exams. Some of the mod-
ules I had to study were ‘Introduction into Programming’ with Java as the
given language, as well as ‘Medical Image Reprocessing,’ which used Python.
In all honesty, I felt completely overwhelmed. I did not understand anything,
nor did I know where to start. All I knew about were if-else statements, the
while-loop, and how to write the famous ‘hello world’ program. That was it.

Let me explain the cause of my struggles. The class consisted of 90-
minute lectures or seminars in which the professor or tutor would explain
concepts with the help of Powerpoint slides filled with large amounts of code.
We were sometimes encouraged to apply the information and program in
real-time which was quite helpful. However, once I lost focus, I had no clue

12 Pavel Solin and Alexander Freyer

how to approach the next line of code. That struggle continued for an entire
semester.

Knowing that I needed to do something about it, I googled how to begin
coding and which language I should start with. In one YouTube video, an
experienced programmer suggested that newbies start with Karel. ”Learning
a language is like driving a vehicle,” he explained. Once you get your driver’s
license, it doesn’t really matter what car you drive. Although the experience
may vary slightly, the traffic rules remain the same.

So, I went searching and found the famous book, Karel the Robot: A
Gentle Introduction to The Art of Programming, by Richard E. Pattis [25]. I
also came across the short free Karel sampler course [22] from NCLab.

Who is Karel the Robot? Karel is a simple robot that can be pro-
grammed to solve mazes using very basic commands such as ’go’ (move one
square forward), ’left’ (turn 90 degrees left), ’right’ (turn 90 degrees right),
’get’ (collect an item from the ground beneath you), and ’put’ (place an ob-
ject from your backpack on the ground where you stand). It also has the
counting loop ’repeat’, the conditional loop ’while’, ’if-else’ and ’if-elif-else’
conditions, the keyword ’def’ to define new commands, it can use functions,
variables, recursion, even Python lists, etc.

The Karel language is almost just abbreviated English, but that makes
it really efficient for teaching algorithmic thinking, problem solving, and pro-
gramming logic. This language was designed in the 1980s at Stanford. Back
then it was similar to Pascal, but a few years ago Dr. Solin adjusted it and
expanded to be similar to Python, because Pascal is no longer a leading pro-
gramming language today. Dr. Solin’s textbook Learn How to Think With
Karel the Robot is freely available online [23].

After completing the sampler course, I regained confidence in my knowl-
edge and skills. But why was this the case?

For instance, I finally really understood the concept and purpose of the
’while’ loop. Sometimes Karel was in front of a wall, and had to do something
while the wall was in front of him, such as to look for a corner. Sometimes he
had to walk straight to the next wall (while a wall was not in front of him).
Or, he needed to place objects from his backpack on the ground until the
backpack was empty (= while it was not empty). At another time, he had to
turn left until he faced North (= while he did not face North).

In one of the tasks, I even wrote unknowingly the First Maze Algorithm
(FMA), which was a great feeling. For illustration, Fig. 1 shows a sample
maze where the FMA is used. In this maze, Karel’s objective is to collect all
tulips and roses (collectible objects), avoid water (obstacle), and enter the
home square (Karel’s destination):

Self-Paced, Instructor-Assisted Approach to Teaching Python 13

Figure 1. Sample maze which includes water (obstacle),
tulips and roses (collectible objects), and the home square
(Karel’s destination).

Fig. 2 presents a program that uses the FMA. This algorithm guides Karel to
pass through an arbitrary labyrinth where the path is one square wide, and
can only go straight, to the left, or to the right. The program below will guide
Karel through the maze from Fig. 1, collecting all tulips and roses, until he
enters the home square:

Figure 2. Program based on the FMA which guides Karel
to the home square, collecting all tulips and roses.

The sampler course proved to be extremely helpful, therefore I decided to
enroll in the full-length Computational Literacy course from NCLab. This
was an extraordinary experience. Let me tell you why.

In this course I felt guided. I had a starting point. There weren’t dozens
of slides to investigate. The information was delivered in a concise and com-
prehensive way, and examples for concepts were always provided. We were
able to step through the code line by line and see what actually happens.

14 Pavel Solin and Alexander Freyer

Sometimes, solving tasks required me to think deeply and come up with cre-
ative solutions. I remember a task where Karel should find out whether there
is a gem in each aisle or not. It took me quite a while before I could come up
with an idea. It actually came to me when I was lying in bed. I grabbed my
notebook, wrote it down, and tried it out. It worked!

These moments of excitement, clarity, and inspiration never happened
in my university’s programming course. There, often I just hoped that some
friend would give me the code so that we could get done with the task
as quickly as possible. As a result, I did not learn much. Even though the
NCLab’s Karel course was challenging at times, I never felt lost. I could re-
view my notes, use the hints, and even reach out to the support team which
answered my questions within a few hours.

In my university’s programming course, the professor would tell us the
solution, as well as the most common mistakes. But when you have no base,
it is hard to understand and to follow. For example, he recommend doing
W3Schools tutorials or buying some textbook. However, the information was
quite overwhelming for a beginner. Also, it always was about the language
itself and the syntax, rather than about the logic of programming. This I
found weird because the module was called ’Introduction to Programming’.
How should one think to find the solution of the task? What is actually
happening behind the scenes? These questions were answered for me in the
NCLab’s Karel course.

In conclusion, the NCLab’s Karel course helped me discover that I really
enjoy computer programming. After finishing it, I enrolled into the NCLab’s
Python Developer career training. This training was every bit as good as the
Karel course. It gave me lots of practice, and made me job-ready. This training
is aligned with the PCEP™ (Certified Entry-Level Python Programmer) exam
[27] by the Python’s Institute. It prepared me for the PCEP exam really well.
After finishing it, I passed the exam with a score of 96%, and landed an entry-
level Python position at a big company located in Germany.

Because the NCLab’s self-paced teaching method works really well for
me, currently I am enrolled in the Advanced Python Developer career train-
ing. Here I am learning object-oriented programming, event-driven program-
ming, and various advanced Python and Computer Science concepts. When
I finish it, I will be ready to take the next-level PCAP™ (Certified Associate
in Python Programming) exam [28] of the Python Institute.

Appendix B. Python Curriculum in NCLab

NCLab provides two Python career training programs which produce job-
ready Python programmers. The Python Developer career training is aligned
with the Python Institute’s PCEP certification [27], and the Advanced Python
Developer career training is aligned with the Python Institute’s PCAP cer-
tification [28]. The former consists of the following self-paced courses and
software projects:

Self-Paced, Instructor-Assisted Approach to Teaching Python 15

• Introduction to Python: This course provides a detailed and compre-
hensive overview of the Python programming language. Students learn
Python by solving programming problems of gradually increasing com-
plexity, using simple calculations, loops, conditions, local and global
variables, functions, ternary conditional expressions, and basic excep-
tions handling. Students also become proficient in working with funda-
mental Python data structures, including tuples, lists, and dictionaries.
Throughout the course, students are developing a good Python coding
style and other good coding habits.

• Working with Text in Python: More than 80% of work computers do is
processing text. In this course students learn how to process, analyze,
and manipulate text strings with Python.

• Plotting and Drawing with Python: Python is known for its powerful
graphic capabilities. In this course students learn how to use the pow-
erful Python library Matplotlib for plotting and drawing.

• Software Project 1 (Graphics Editor): Students build their own Graph-
ics Editor based on Matplotlib. The Graphics Editor is able to create
shapes such as squares, triangles, rectangles and circles, fill objects with
color, move, scale and rotate shapes, and combine them to make com-
plex drawings. In addition to substantial programming practice, this
Software Project provides students with a valuable insight into the prin-
ciples of good software design.

• Working with Files in Python: Most data are stored in files. Therefore,
this course teaches students how to open files, read data from them,
process the data, and write back to files.

• Software Project 2 (Image Viewer): Students build their own Image
Viewer in Python. The Image Viewer is able to read bitmap images
from files, store them as 2D Numpy arrays, and visualize them with
Matplotlib. In this Software Project students practice working with files,
text strings, and the Numpy and Matplotlib libraries.

• Data Visualization with Python: The world we live in is driven by data.
Therefore, in this course students learn how to visualize data in the
form of simple graphs, bar charts, pie charts, color maps, surface plots,
wireframe plots, and contour plots. Students also learn how to visualize
data on 2D Cartesian grids and unstructured triangulations.

• Data Analytics Minimum: Most real-life applications of Python are to
some extent related to Data Analytics (DA). Therefore, the DA Mini-
mum course teaches students how to use the Pandas library and perform
elementary Data Analytics with Python.

• Computer Science Minimum: Every Python developer must know the
basics of Computer Science (CS) including the binary, octal, and hexa-
decimal numeral systems, and bitwise operators. These are also required
for the PCEP exam. That’s exactly what students learn in this course.

• Intermediate Topics in Python: This course covers selected intermedi-
ate Python concepts including variadic function, anonymous (lambda)

16 Pavel Solin and Alexander Freyer

functions, built-in functions any(), all(), map(), filter(), reduce(), eval()
and exec(), iterables and iterators, and generator functions and gener-
ator expressions. Students also gain a deeper insight into mutability,
shallow and deep copying, and exceptions handling.

• PCEP Preparation Course: This course includes several PCEP [27] prac-
tice exams and prepares students to score high on the PCEP exam.
PCEP is an industry-recognized certification from the Python Institute
that will add a significant weight to students’ resumes. Students are
encouraged to take the PCEP exam before starting to work on their
Capstone Project.

• Capstone Project: Students choose one of two options:
– Option 1: Look up open source projects on Github, find one that
they like, and contribute to it by submitting a pull request. Their
contribution must be consulted and approved by their instructor
in advance.

– Option 2: Implement their own program in Python and upload it
to Github. The topic of the program is chosen by the student, but
must be consulted and approved by their instructor in advance.
Typically, a more substantial program is required compared to
Option 1.

In both cases students are required to create a free Github user account,
and to install a Python IDE on their own computer or laptop.

The Advanced Python Developer career training comprises the following self-
paced courses and software projects:

• Software Project 3 (Digital Computer): In this software project students
use Python to simulate logic gates, binary adders and multipliers, and
implement their own simple model of a digital computer in Python.

• Object-Oriented Programming 1: This course covers the basics of OOP
including the history of programming languages, how OOP evolved
from procedral programming, the concept of encapsulation, classes, at-
tributes, methods, and instantiation.

• Software Project 4 (Turtle Graphics): In this software project students
implement their own version of the Python Turtle Graphics.

• Object-Oriented Programming 2: This course covers inheritance and ad-
vanced concepts of OOP such as abstract classes and methods, poly-
morphism, multiple inheritance, mixin classes, the Diamond Problem,
and the Abstract Base Classes (ABC) module.

• Software Project 5 (OOP Upgrade of the Graphics Editor): Students use
inheritance, polymorphism, and multiple inheritance to upgrade their
Graphics Editor from Software Project 1 to an OOP design.

• Event-Driven Programming: Students learn even-driven programming
while implementing the well-known desktop game Othello (Reversi).

• Advanced Topics in Python: This course covers selected advanced Python
concepts including advanced applications of recursion to Polish (prefix)

Self-Paced, Instructor-Assisted Approach to Teaching Python 17

notation and binary trees, names and namespaces, packages and mod-
ules, decorators, making Python classes callable, working with JSON
and XML data, etc.

• PCAP Preparation Course: This course includes several PCAP practice
exams and prepares students to score high on the PCAP exam [28].

• Capstone Project: Substantial Python software project based on stu-
dent’s own choice. Instructor’s approval of the topic, and working in
Linux is required.

All of NCLab coursework is ADA compliant [1].

Appendix C. Sample Autograded Python Exercise

Providing instant feedback to students, and validating their understanding
of the subject is absolutely crucial in their learning process. Therefore, below
we present a sample exercise and show how NCLab performs grading. The
exercise is related to recursion:

Write a recursive function permute(L) which for a list L returns a list of all
permutations of L (i.e. a list of lists)! Do not use itertools. The Math and
Numpy modules also provide functions to calculate permutations, but do not
use them either. Do not change the main program. Expected output:

Then follows the expected output of the main program:

[1, 2, 3, 4] [1, 2, 4, 3] [1, 3, 2, 4] [1, 3, 4, 2] [1, 4, 2, 3] [1, 4, 3, 2] [2, 1, 3,
4] [2, 1, 4, 3] [2, 3, 1, 4] [2, 3, 4, 1] [2, 4, 1, 3] [2, 4, 3, 1] [3, 1, 2, 4] [3, 1,
4, 2] [3, 2, 1, 4] [3, 2, 4, 1] [3, 4, 1, 2] [3, 4, 2, 1] [4, 1, 2, 3] [4, 1, 3, 2] [4,
2, 1, 3] [4, 2, 3, 1] [4, 3, 1, 2] [4, 3, 2, 1]

Matching this output successfully is the first test which allows the students
to see immediately if their function produces an incorrect result. But even
if they match the expected output successfully, additional tests will be per-
formed.

There is a large number of various grading criteria a course designer can
choose from. One of them is a list of forbidden keywords. In this particular
exercise, the forbidden keywords include ”import” which prevents students
from importing itertools, math or numpy and using recursion from there.

In the code input cell the students find the main program (which they know
they must not change). They also know that the ellipsis ”...” is to be replaced
with their function permute(L):

. . .

18 Pavel Solin and Alexander Freyer

Main program (do not change) :
numbers = [1 , 2 , 3 , 4]
f o r p in permute (numbers) :

pr in t (p , end=’ ’)

Some students will be able to figure out the solution on their own, others will
need help. For the latter group, there is always a hint. In this case, it walks
them through the algorithm for permutations of a three-item list:

Here is the main idea, illustrated on a 3-item list L = [1, 2, 3]:

• Extract from [1, 2, 3] the first item 1. The remainder of the list is [2,
3]. Obtain all permutations of this shorter list recursively. These are
[2, 3] and [3, 2]. In both cases insert the item 1 back at the beginning,
obtaining [1, 2, 3] and [1, 3, 2].

• Extract from [1, 2, 3] the second item 2. The remainder of the list is
[1, 3]. Obtain all permutations of this shorter list recursively. These are
[1, 3] and [3, 1]. In both cases insert the item 2 back at the beginning,
obtaining [2, 1, 3] and [2, 3, 1].

• Extract from [1, 2, 3] the third item 3. The remainder of the list is [1,
2]. Obtain all permutations of this shorter list recursively. These are
[1, 2] and [2, 1]. In both cases insert the item 3 back at the beginning,
obtaining [3, 1, 2] and [3, 2, 1].

The solution to this exercise is as follows. Students will see it in a side-by-side
comparsion with their own code once their function passes the grader:

def permute (L) :
”””Creates a l i s t o f a l l permutat ions o f l i s t L”””

Obtain the l e n g t h o f L :
n = l en (L)

I f n == 1 , re turn a one−i tem l i s t con ta in ing L :
i f n == 1 :

return [L]

Create an empty l i s t R fo r the r e s u l t :
R = []

Use a f o r loop wi th n c y c l e s :
f o r i in range (n) :

Read i t h item from L:
i t em i = L [i]

Self-Paced, Instructor-Assisted Approach to Teaching Python 19

Create a remainder wi thout the i t h item :
remainder = L [: i] + L [i +1:]

Use a f o r loop to go over a l l permutat ions p
of the remainder :
f o r p in permute (remainder) :

Append to R the i t h item (as a l i s t) + p :
R. append ([i t em i] + p)

Return the r e s u l t :
return R

The students can run their program as many times as they want without
penalties. But when they press Submit, their code is sent to a remote server
for grading. Below we show the main parts of the autograding code for this
particular exercise.

The grader begins with checking if the name ”permute” is defined in
the first place:

try :
permute

except NameError :
lab . grade (False , ”Name ’ permute ’ i s undef ined . ”)
return False

As a next test, the grader checks if the name ”permute” is a callable function
(in this code snippet as well as in the following ones, lines are artificially
wrapped with the backslash symbol ’\’ to fit the page width):

i f not c a l l a b l e (permute) :
lab . grade (False , ” I t seems that ’ permute ’ i s not \
a c a l l a b l e func t i on . ”)
return False

Then follows the master solution permute sol (L) which is used to check the
results of the student’s function (the code is the same as above, therefore we
won’t repeat it here):

def permute so l (L) :
. . .

20 Pavel Solin and Alexander Freyer

Finally the student’s function is called with several test lists, and the result
is compared to the result produced by the master solution permute sol (L):

f o r p in [[’ a ’] , [’ a ’ , ’ b ’] , [’ a ’ , ’ b ’ , ’ c ’] , \
[’ a ’ , ’ b ’ , ’ c ’ , ’ d ’] , [’ a ’ , ’ b ’ , ’ c ’ , ’ d ’ , ’ e ’] , \
[’ a ’ , ’ b ’ , ’ c ’ , ’ d ’ , ’ e ’]] :
try :

t = permute (p)
except Exception as e :

lab . grade (False , f ”Test c a l l permute ({ p }) \
caused an except ion : ”)
lab . grade (False , s t r (e))
return False

t s o l = permute so l (p)
i f sor ted (t) != sorted (t s o l) :

lab . grade (False , f ”Test c a l l permute ({ p }) \
returned an i n c o r r e c t r e s u l t . ”)
lab . grade (False , ”Your r e s u l t : ” + s t r (t))
lab . grade (False , ” I expected : ” + s t r (t s o l))
return False

References

[1] ADA: Information and Technical Assistance on the Americans with Disabili-
ties Act. URL https://www.ada.gov/2010ADAstandards_index.htm. Accessed
September 20, 2020.

[2] Alaoutinen, S. & Smolander, K. (2010). Student self-assessment in a program-
ming course using Bloom’s revised taxonomy, Proceedings of the 15th An-
nual Conference on Innovation and Technology in Computer Science Education,
Laxer, C. (Ed.), pp. 155-159, ISBN 978-1-60558-820-9

[3] Ben-Ari, M. (1998). Constructivism in computer science education. ACM
SIGCSE Bulletin, Vol. 30, No. 1, March 1998, pp. 257-261, ISSN 0-89791-994-7

[4] Benjamin LT, Jr. Lecturing. In: The Teaching of Psychology: Essays in Honor of
Wilbert J. McKeachie and Charles L. Brewer, edited by Davis SF and Buskist
W. Mahwah, NJ: Lawrence Erlbaum Associates, 2002, p. 57–67.

[5] Bennedsen, J. & Caspersen, M. E. (2007). Failure rates in introductory pro-
gramming. ACM SIGCSE Bulletin, Vol. 39, No. 2, June 2007, pp. 32-36, ISSN
0097-8418

[6] N.A. Bradbury. Attention span during lectures: 8 seconds, 10 minutes, or more?
Advances in Physiology Education, Volume 40, Issue 4, December 2016, pp.
509-513

[7] Chegg: Find Solutions For Your Homework. http://chegg.com. Accessed Sep-
tember 20, 2020.

https://www.ada.gov/2010ADAstandards_index.htm
http://chegg.com

Self-Paced, Instructor-Assisted Approach to Teaching Python 21

[8] CourseHero: Find Online Study Resources - Better Grades Start Here. http:
//coursehero.com. Accessed September 15, 2022.

[9] Davis BG. Tools for Teaching. San Franciso, CA: Jossey-Bass, 1993.

[10] Fincher, S.; Robins, A.; Baker, B.; Box, I.; Cutts, Q.; de Raadt, M.; Haden, P.;
Hamer, J.; Hamilton, M.; Lister, R.; Petre, M.; Sutton, K.; Tolhurst, D. & Tutty,
J. (2006). Predictors of success in a first programming course. Proceedings of the
8th Australasian Conference on Computing Education, Tolhurst, D. & Mann,
S. (Eds.), Vol. 52, pp. 189-196, ISBN 1-920682-34-1

[11] Ford, M. & Venema, S. (2010). Assessing the success of an introductory pro-
gramming course. Journal of Information Technology Education: Research, Vol.
9, No. 1, January 2010, pp. 133-145, ISSN 1539-3585

[12] S. Marken, S. Crabtree. U.S. Students’ Computer Science Participation Lags
Interest. Gallup Poll, September 30, 2021

[13] G. Akçayır, M. Akçayır, The Flipped Classroom: A Review of Its Advantages
and Challenges. Computers and Education 126 (2020), 334–345.

[14] Hartley J, Davies IK. Note taking: A critical review. Program Learn Educ Tech
15: 207–224, 1978

[15] Hawi, N. (2010). Causal attributions of success and failure made by undergrad-
uate students in an introductory-level computer programming course. Comput-
ers & Education, Vol. 54, No. 4, May 2010, pp. 1127-1136, ISSN 0360-1315

[16] Jenkins, T. (2002). On the difficulty of learning to program. Proceedings of
the 3rd Annual Conference of the LTSN Centre for Information and Computer
Sciences, pp. 53-58, ISBN 0-9541927-1-0

[17] Kinnunen, P. & Malmi, L. (2006). Why students drop out CS1 course? Pro-
ceedings of the 2nd International Workshop on Computing Education Research,
Anderson, R.; Fincher, S. A. & Guzdial, M. (Eds.), pp. 97-108, ISBN 1-59593-
494-4

[18] Konecki, M[ario] (2014). Problems in Programming Education and Means
of Their Improvement, Chapter 37 in DAAAM International Scientific
Book 2014, pp.459-470, B. Katalinic (Ed.), Published by DAAAM In-
ternational, ISBN 978-3-901509-98-8, ISSN 1726-9687, Vienna, Austria
DOI:10.2507/daaam.scibook.2014.37

[19] McCartney, R.; Moström, J. E.; Sanders, K.; Seppälä, O.; Simon, B. & Thomas,
L. (2004). A multi-national study of reading and tracing skills in novice program-
mers. ACM SIGCSE Bulletin, Vol. 36, No. 4, December 2004, pp. 119- 150, ISSN
0097-8418

[20] McKeachie WJ. Teaching Tips: Strategies, Research and Theory for College
and University Teachers. Lexington, MA: Heath, 1986.

[21] NCLab (Network Computing Laboratory), URL http://nclab.com. Accessed
September 15, 2022.

[22] NCLab Free Sampler Courses, URL http://nclab.com/samplers. Accessed
September 15, 2022.

[23] P. Solin, Learn How to Think With Karel the Robot, 300 pages, URL http:

//femhub.com/pavel/work/textbook-karel-new.pdf. Accessed September 15,
2022.

[24] Nikula, U.; Gotel, O. & Kasurinen, J. (2011). A motivation guided holistic
rehabilitation of the first programming course. ACMTransactions on Computing

http://coursehero.com
http://coursehero.com
http://nclab.com
http://nclab.com/samplers
http://femhub.com/pavel/work/textbook-karel-new.pdf
http://femhub.com/pavel/work/textbook-karel-new.pdf

22 Pavel Solin and Alexander Freyer

Education (TOCE), Vol. 11, No. 4, November 2011, Art. No. 24, ISSN 1946-
6226

[25] R.E. Pattis. Karel the Robot: A Gentle Introduction to the Art of Program-
ming. J. Wiley and Sons, 1994.

[26] W. Feurzeig, S. Papert, C. Solomon: Logo, an introductory programming lan-
guage for beginners. Created in 1967.

[27] Python Institute’s PCEP (Certified Entry-Level Python Programmer) exam,
URL https://pythoninstitute.org/pcep. Accessed September 15, 2022.

[28] Python Institute’s PCEP (Certified Associate in Python Programming) exam,
URL https://pythoninstitute.org/pcap. Accessed September 15, 2022.

[29] Pears, A.; Seidman, S.; Malmi, L.; Mannila, L.; Adams, E.; Bennedsen, J.;
Devlin, M. & Paterson, J. (2007). A survey of literature on the teaching of
introductory programming. ACM SIGCSE Bulletin, Vol. 39, No. 4, December
2007, pp. 204-223, ISSN 0097-8418

[30] Peng, W. (2010). Practice and experience in the application of problem-based
learning in computer programming course. Proceedings of the International Con-
ference on Educational and Information Technology (ICEIT), Yuting, L. (Ed.),
Vol. 1, pp. 170-172, ISBN 978-1-4244-8033-3

[31] Robins, A.; Rountree, J. & Rountree, N. (2003). Learning and Teaching Pro-
gramming: A Review and Discussion. Journal of Computer Science Education,
Vol. 13, No. 2, April 2003, pp. 137-172, ISSN 0899-3408

[32] Scratch. An online platform for learning computer programming http://

scratch.mit.edu. Accessed September 15, 2022.

[33] Smith, P. A. & Webb, G. I. (2000). The efficacy of a low-level program vi-
sualization tool for teaching programming concepts to novice C programmers.
Journal of Educational Computing Research, Vol. 22, No. 2, April 2000, pp.
187-216, ISSN 0735-6331

[34] P. Solin, E. Roanes-Lozano: Using Computer Programming as an Effective
Complement to Mathematics Education: Experimenting with the Standards
for Mathematics Practice in a Multidisciplinary Environment for Teaching and
Learning with Technology in the 21 st Century. International Journal of Tech-
nology in Mathematics Education, Vol 27, No 3, pp. 147 - 156, 2020

[35] P. Solin. Self-Paced, Instructor-Assisted Approach to Teaching Linear Algebra.
Mathematics in Computer Science, 15(4), pp. 1-27

[36] Sorva, J.; Karavirta, V. & Malmi, L. (2013). A review of generic program visu-
alization systems for introductory programming education. ACM Transactions
on Computing Education (TOCE), Vol. 13, No. 4, November 2013, Art. No. 15,
ISSN 1946-6226

[37] A. Sams, J. Bergmann, Flip Your Students’ Learning. Educational Leadership
70 (2013), 16–20.

[38] Tan, P. H.; Ting, C. Y. & Ling, S. W. (2009). Learning difficulties in program-
ming courses: undergraduates’ perspective and perception. Proceedings of the
IEEE International Conference on Computer Technology and Development, Ju-
soff, K.; Othman M. & Xie Y. (Eds.), Vol. 1, pp. 42-46, ISBN 978-0-7695-3892-1

[39] Wankat PC. The Effective Efficient Professor: Scholarship and Service. Boston,
MA: Allyn and Bacon, 2002.

https://pythoninstitute.org/pcep
https://pythoninstitute.org/pcap
http://scratch.mit.edu
http://scratch.mit.edu

Self-Paced, Instructor-Assisted Approach to Teaching Python 23

[40] Yadin, A. (2011). Reducing the dropout rate in an introductory programming
course. ACM Inroads, Vol. 2, No. 4, December 2011, pp. 71-76, ISSN 2153-2184

Pavel Solin
Founder of NCLab (http://nclab.com)
Professor, Department of Mathematics and Statistics, University of Nevada, Reno
e-mail: pavel@nclab.com, solin@unr.edu

Alexander Freyer
University of Lübeck, Germany
e-mail: alexanderfreyer98@gmail.com

	1. Introduction
	2. Outline
	3. Lectures, Homework, and Flipped Classroom
	4. Self-Paced Learning by Doing
	5. Interactive Course Materials
	5.1. Tutorials
	5.2. Examples
	5.3. Exercises
	5.4. Tasks
	5.5. Hints
	5.6. Discussions and Side-by-Side Code Comparisons
	5.7. Quizzes

	6. Importance of Real-Time Feedback
	7. Real-Time Progress Monitoring
	8. Results of a Student Survey
	9. Representative Student Testimonials
	Appendix A. Traditional Instruction vs. Self-Paced Learning By Doing From a Student's Point of View
	Appendix B. Python Curriculum in NCLab
	Appendix C. Sample Autograded Python Exercise
	References

