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Abstract

We introduce an innovative approach to teaching solid modeling and CAD,
where students actively engage in hands-on learning at their own pace, rather
than passively listening to lectures. Throughout the course, their 2D and 3D
models are evaluated in real-time by an advanced cloud computing platform
that provides instant feedback, helping them build confidence and master the
subject more effectively. Instead of lecturing, instructors dedicate their time
to providing individualized support. We also explain why scripting-based
CAD simplifies the learning process compared to traditional CAD software
and why we have chosen the Python-based Programming Language of Solid
Modeling (PLaSM). A key focus is the automated server-side grading of
student assignments, a cornerstone of the self-paced course, offering a level
of structured guidance and feedback that traditional CAD software lacks.
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1. Introduction

Over the past decade, we have taught solid modeling and CAD to a di-
verse range of learners, from high school CTE students to adults looking to
upskill in the age of automation and Industry 4.0. Initially, we used tradi-
tional CAD software such as Blender and SketchUp. While these tools are
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simpler than commercial software like SolidWorks or AutoCAD, many stu-
dents still struggled with them. The challenge was not just in understanding
3D modeling concepts, but also in navigating complex graphical user inter-
faces (GUIs). Students often found themselves focusing more on learning the
software’s interface rather than the fundamentals of 3D modeling itself.

To address this challenge, we transitioned to a scripting-based CAD ap-
proach. After evaluating several options, we selected PLaSM (Programming
Language of Solid Modeling), which we later customized based on student
feedback, as detailed in Section 7. We found that scripting significantly
enhanced the learning experience for most students. In fact, it is hard to
imagine a lower barrier to entry than simply typing two lines of code, as
demonstrated in Fig. 1.

¢ = CUBE(2)
SHOW(c)

Figure 1: Minimal PLaSM script to create and display a 2 x 2 x 2 cube

The corresponding 3D model is shown in Fig. 2.

Figure 2: The corresponding 3D model, computed on the server and displayed back in the
student’s web browser

This simplicity eliminated both perceived and real barriers to entry, allowing
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many students to truly enjoy creating 3D models for the first time. Addition-
ally, scripting-based CAD proved to be more effective in teaching geometric
transformations and Boolean operations fundamental to Constructive Solid
Geometry (CSG). Our observations align with findings from other studies
(see, e.g. [1, 2, 3] and the references therein), which suggest that integrating
scripting into CAD education not only enhances students’ learning experi-
ences but also fosters critical thinking and problem-solving skills, providing
a more comprehensive approach compared to traditional CAD software.

However, another significant challenge remained: the limitations of tradi-
tional synchronous classroom instruction. In this paper, we examine the dif-
ficulties our students faced and how these challenges were addressed through
the development of a self-paced solid modeling course. The key innovation of
this course is its real-time server-side grading of student assignments, which
we explore in detail. We also provide an in-depth explanation of the course
design, with the full syllabus available in Appendix A.

The outline of the paper is as follows: Section 2 provides background
information on solid modeling and Constructive Solid Geometry (CSG). Sec-
tion 3 discusses common challenges in teaching solid modeling and CSG.
Section 4 highlights the benefits of self-paced, instructor-assisted learning.
Section 5 presents an overview of scripting-based CAD tools. Section 6 in-
troduces the Programming Language of Solid Modeling (PLaSM). Section 7
details how we customized PLaSM for educational purposes. Section 8 ex-
plains the implementation of automated server-side grading, with a concrete
example in Section 9. Section 10 summarizes our conclusions. Finally, Sec-
tion Appendix A presents a sample syllabus for an introductory 3D modeling
course used with our students.

2. Solid Modeling and CSG

Solid modeling is a fundamental technique in Computer-Aided Design
(CAD), engineering, and computer graphics that provides a mathematically
precise and volumetric representation of 3D objects. Unlike surface modeling,
which only defines an object’s outer shell, solid modeling ensures that objects
are watertight, physically accurate, and suitable for manufacturing, simula-
tion, and analysis [4, 5]. Solid modeling is widely utilized across industries
such as advanced manufacturing, construction, architecture, mechanical de-
sign, 3D printing, and computational simulations, where it enables engineers
to create, modify, and analyze complex structures efficiently. It encompasses



several techniques, including boundary representation (B-rep), sweep-based
modeling, and feature-based parametric design [6, 7].

A key subset of solid modeling is Constructive Solid Geometry (CSG),
which constructs complex 3D shapes using Boolean set operations such as
union, intersection, and difference applied to simple geometric primitives
like cubes, spheres, and cylinders. These primitives are typically represented
through their boundaries, including implicit surfaces, and combined using hi-
erarchical structures known as CSG trees [8, 9]. CSG has gained prominence
in scientific and engineering applications due to its compact representation
and computational efficiency. Unlike boundary representation (B-rep) meth-
ods, which store explicit surface descriptions, CSG facilitates robust Boolean
operations that maintain topologically consistent solid models and eliminate
ambiguities often associated with boundary-based approaches [10, 11].

One of the main advantages of CSG is its parametric and procedural na-
ture, which allows for easy modifications and adaptability in design processes.
This characteristic is particularly valuable in CAD systems where iterative
design changes need to be implemented efficiently [12, 13]. Additionally,
CSG supports exact geometric queries, making it suitable for engineering
simulations, finite element analysis, and computational physics applications
[14, 15]. Many CAD platforms incorporate CSG principles to facilitate me-
chanical design, architectural modeling, and product engineering due to its
efficiency in constructing complex structures from simple primitives [16, 17].

CSG also plays a significant role in computer graphics and visualization,
where it is used in real-time rendering, ray tracing, and volume rendering to
create complex objects with well-defined intersections and unions of shapes
[18, 19]. Moreover, additive manufacturing processes benefit from CSG mod-
els by ensuring constructability and enabling the efficient generation of sup-
port structures [20]. Many computer game engines utilize CSG techniques
for level design, collision detection, and physics-based simulations [21, 22].
Furthermore, CSG-based representations are widely used in scientific com-
puting to define domain geometries for simulations involving fluid dynamics,
heat transfer, and structural analysis [23, 24].

3. Challenges Associated with Teaching Solid Modeling

It is well known that teaching solid modeling and Constructive Solid
Geometry (CSG) presents a significant challenge in Career Technical Edu-
cation (CTE), engineering, and computer science curricula [25, 26, 27]. The
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complexity of the subject stems from its reliance on spatial reasoning, math-
ematical formulations, and algorithmic implementations [28]. While solid
modeling is fundamental to Computer-Aided Design (CAD), computational
geometry, and manufacturing processes, students often struggle with abstract
concepts, Boolean operations, and hierarchical modeling structures [29].

Various pedagogical approaches have been adopted to teach solid model-
ing effectively, including the use of interactive visualization tools and CAD
software that allow students to experiment with Boolean operations and
observe real-time results [30, 31]. Additionally, teaching the underlying
mathematical principles, such as set theory and boundary representations,
helps students develop a deeper conceptual understanding [32, 33]. Engag-
ing students in hands-on modeling projects reinforces learning and enhances
problem-solving skills [34, 35]. Recent advancements also incorporate VR-
based solid modeling environments to improve student engagement and com-
prehension [36, 37].

Despite these approaches, teaching solid modeling and CSG remains chal-
lenging for several reasons:

1. First and foremost, students often find the Graphical User Interfaces
(GUIs) of advanced CAD tools overwhelming, regardless of whether
they are free or commercial [38, 39]. As a result, they frequently con-
flate learning solid modeling and CSG with learning how to navigate
a specific CAD software product. Over the past decade, many CTE
teachers have reported that the complexity of these software tools is
one of the primary reasons why students develop a negative attitude
toward the subject [40].

2. Most teaching approaches rely on synchronous learning, requiring all
students to progress at the same pace. This often leads to faster stu-
dents becoming idle and disengaged, while slower students struggle to
keep up with both the instructor and their peers [41]. Studies have
shown that self-paced learning methods can significantly improve stu-
dent outcomes in CAD education by reducing cognitive overload and
allowing for personalized learning experiences [42].

3. Another significant drawback of traditional classroom-based instruction
in solid modeling and CSG is the lack of hands-on practice. Master-
ing this subject requires both conceptual understanding and practical
skills; however, the amount of hands-on experience most students re-
ceive is often insufficient [28, 43]. Research suggests that active learn-



ing strategies, such as project-based assignments and scripting-based
CAD, enhance skill acquisition and long-term retention in engineering
education [44].

4. The abstract nature of Boolean operations, hierarchical tree structures,
and the mathematical foundations of CSG further complicate the learn-
ing process [45, 46]. Studies have demonstrated that students benefit
from explicit instruction on these topics using procedural modeling and
algorithmic thinking [47, 48].

5. Finally, the significant variability in teaching methodologies across in-
stitutions leads to inconsistencies in learning outcomes [26, 29]. Stan-
dardizing CAD education with scripting-based approaches and auto-
mated assessment methods has been proposed as a solution to improve
consistency and scalability [49].

In this paper, we present a novel method for teaching solid modeling and CSG
that aims to address points 1-3 outlined above. We propose an approach that
leverages a simple and intuitive scripting-based CAD system, eliminating the
burden and frustration associated with learning the GUI of a complex CAD
platform. Our method is self-paced, allowing students to progress at their
own speed while their work is automatically evaluated and assessed in real-
time by an advanced software platform [50].

Instead of passively listening to an instructor, students engage in carefully
designed, bite-sized tutorials, examples, exercises, and graded tasks, learning
one concept at a time. They must demonstrate mastery of each concept
before advancing to the next stage. This approach fosters confidence, leads
to superior learning outcomes, and most importantly, enables students to
genuinely enjoy learning solid modeling and CSG.

4. Self-Paced, Instructor-Assisted Learning

We have already discussed the advantages of using a scripting-based CAD
system over traditional CAD software for teaching solid modeling and Con-
structive Solid Geometry (CSG). However, another critical challenge remains:
the limitations of traditional synchronous classroom instruction.

Traditional synchronous classroom instruction often fails to accommo-
date the diverse learning paces of students. In these settings, all students are
expected to progress through the material simultaneously, which can disad-
vantage both those who grasp concepts quickly and those who require more



time. This rigid structure can lead to disengagement, as faster learners may
become bored, while others may feel overwhelmed. Research indicates that
self-paced learning allows individuals to progress at their own speed, catering
to their unique needs and significantly improving overall learning outcomes
[51, 52, 53].

Furthermore, the average student’s attention span presents another chal-
lenge in traditional classrooms. Extended periods of passive instruction can
reduce concentration and hinder information retention. Studies show that
attention spans in learning environments typically decline after 10-15 min-
utes, necessitating instructional designs that encourage active engagement
[54, 55]. Self-paced learning addresses this issue by enabling learners to take
breaks as needed, revisit difficult concepts, and structure their study ses-
sions in alignment with their cognitive capacities. This flexibility not only
enhances engagement but also improves knowledge retention [56, 57].

In addition, self-paced learning fosters the development of self-regulation
and time management skills. By taking ownership of their educational jour-
ney, students decide when and how to engage with the material. This au-
tonomy encourages deeper comprehension and cultivates lifelong learning
habits. Studies have shown that self-paced learners often exhibit higher re-
tention rates and develop effective learning strategies that extend beyond the
classroom [58, 59, 60].

For these reasons, we initially introduced an alternative instructional
model in the context of Linear Algebra [61], where students engage in active
learning 100% of the time, supported by an advanced interactive learning
platform and real-time instructor assistance. The overwhelmingly positive
student feedback validated this approach. Its success prompted us to extend
the methodology to teaching Python programming [62] and SQL [63], where
it proved equally effective. To avoid redundancy with our previous publica-
tions, we provide only a brief summary of the teaching method below.

Instead of passively listening to lectures or struggling to learn indepen-
dently without guidance, students actively engage in learning at all times un-
der the supervision of an instructor. Using their own devices, they progress at
their own pace through bite-sized tutorials, examples, exercises, and graded
practical tasks. Their work is continuously evaluated by a cloud-based plat-
form that provides real-time feedback, instantly validating their understand-
ing and offering assistance when needed. To advance, students must demon-
strate mastery of each concept before proceeding to the next.

Instead of delivering lectures, the instructor provides individualized sup-
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port, significantly improving student outcomes and offering greater insight
into each learner’s progress and areas of difficulty. After more than a decade
of implementing this approach, we are convinced that nothing can replace
the value of one-on-one interaction between students and their instructor.

5. Scripting-Based CAD Tools

Numerous educators, ourselves included, prefer using scripting-based CAD
tools to teach solid modeling and Constructive Solid Geometry (CSG). Ex-
amples of such tools include PLaSM [1] and OpenSCAD [64]. These tools
emphasize scripting (typing simple code or pseudo-code) over the use of a
GUI. Students type simple commands to define basic 2D and 3D shapes
and apply geometric transformations and Boolean operations to them while
practicing elementary computer programming concepts.

It is well known that engaging in scripting and programming activities
can significantly enhance attention to detail. The meticulous nature of writ-
ing code requires individuals to focus on syntax, logic, and structure, thereby
fostering precision and thoroughness. Research indicates that the structured
environment of programming encourages the development of problem-solving
skills and attention to detail [65]. For instance, a study published in the Jour-
nal of Educational Computing Research found that students who participated
in coding exercises demonstrated improved analytical thinking and precision
in their work [66]. Additionally, the process of debugging code, i.e., identi-
fying and correcting errors, further reinforces meticulousness, as it demands
careful examination of each line of code to ensure accuracy and functionality
(67, 68]. Therefore, incorporating scripting into educational curricula or per-
sonal development plans can be an effective strategy for enhancing attention
to detail.

Another benefit of using a scripting CAD is that the written commands
require concrete values for sizes, distances, angles, and vectors. In other
words, students must calculate the correct values either mentally or on paper
before entering them into the script. This contrasts with using a GUI, where
they can often manipulate objects visually using a mouse without needing
to compute precise numerical values [69].

However, improving attention to detail and quantitative geometry skills
are not the only advantages of using a scripting CAD over a GUI. The script
represents a detailed step-by-step history of all the shapes the student de-
fined, along with all the transformations and Boolean operations they ap-



plied. This means that by reviewing the script, an instructor can easily
identify mistakes or inefficiencies in the student’s design thinking and work-
flow. In contrast, when a student uses a GUI, the instructor can only assess
the final model, without insight into the thought process and the steps taken
to arrive at the solution [70].

Another distinct benefit of scripting CAD tools is that they are conducive
to implementing automated server-side grading of student designs. Receiving
real-time feedback on their work is crucial for students, as it enables them to
immediately identify and correct mistakes [71]. This capability is a corner-
stone of our self-paced approach to teaching solid modeling and CSG, and
we will discuss it in detail in Section 8.

Research has also explored how integrating programming with CAD en-
hances students’ ability to comprehend geometric reasoning and algorithmic
design, making such tools valuable in engineering and computer science cur-
ricula [72, 73, 35]. Additionally, studies have demonstrated that scripting-
based CAD fosters computational thinking, allowing students to develop a
deeper understanding of design principles and logical structuring in 3D mod-
eling tasks [74, 75].

6. Programming Language of Solid Modeling (PLaSM)

A prominent position among scripting CAD tools is held by PLaSM (Pro-
gramming Language of Solid Modeling) [1]. This is an open-source, Python-
based scripting language developed by Alberto Paoluzzi and his research
group at the University of Roma Tre in Italy. PLaSM is a functional pro-
gramming language specifically designed for computational geometry and
parametric solid modeling. It provides a powerful and expressive framework
for creating complex geometric models using mathematical functions and
Constructive Solid Geometry (CSG) operations.

PLaSM is based on a higher-order functional programming paradigm,
utilizing a Lisp-like syntax with a strong emphasis on geometric abstrac-
tion and declarative modeling [76, 77]. It supports Boolean operations such
as union, intersection, and difference and enables the definition of models
through variables and functions, facilitating flexible design modifications.
Unlike traditional CAD systems that rely on explicit modeling, PLaSM pro-
motes parametric and algorithmic design, making it particularly effective for
procedural geometry and generative design applications [78].



One of PLaSM’s key advantages is its support for n-dimensional geome-
try, allowing complex transformations and hierarchical modeling [79]. This
capability makes it well-suited for advanced geometric computing, topologi-
cal modeling, and spatial data representation [80]. Additionally, PLaSM can
interface with external tools for CAD applications and finite element analysis
(FEA), making it a valuable tool in engineering simulations and structural
analysis [81].

PLaSM is widely used in academic and research environments for teach-
ing computational geometry, solid modeling, and parametric design [82]. Its
applications span architectural design, where it is employed for generating
parametric building models, urban planning simulations, and digital fabri-
cation workflows [83, 84]. In engineering and manufacturing, PLaSM sup-
ports the modeling of mechanical components, structural frameworks, and
3D-printable objects, enhancing CNC machining workflows and rapid pro-
totyping processes [85]. Moreover, PLaSM has been applied in scientific
data visualization across multiple disciplines, including physics, biology, and
computational sciences, to model complex spatial structures and dynamic
simulations [86, 87].

Importantly, PLaSM serves as a valuable educational tool in colleges and
universities, supporting courses on computational design, algebraic geom-
etry, functional programming, and algorithmic modeling [88, 89]. As an
open-source scripting CAD, it provides students with hands-on experience in
parametric modeling, geometric reasoning, and computational design think-
ing, making it an excellent platform for engineering, architecture, and com-
puter science education.

7. Modifying PLaSM for Educational Purposes

While working with students, we observed that the functional program-
ming paradigm used in PLaSM introduced an unnecessary learning challenge
for many of them. The higher-order functional approach, though powerful,
required students to adopt a mathematical and abstract way of thinking that
was often unfamiliar and difficult for beginners in computational design. Ad-
ditionally, students found the lack of color representation frustrating, as all
models in the original PLaSM were displayed in grayscale. This absence
of color made it more difficult to distinguish geometric features and spatial
relationships, which are essential for intuitive learning.
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To address these issues, we implemented a procedural wrapper around
the original PLaSM. This modification reduced the generality from support-
ing arbitrary dimensions to focusing solely on 2D and 3D modeling. It also
introduced color support, simplified several commands, and made PLaSM
overall more intuitive and user-friendly for students. By adopting a proce-
dural rather than purely functional approach, students could define models
using step-by-step commands, making the learning process more accessible
while preserving the expressive power of the language.

For illustration, a sample 3D model consisting of a 6 x 6 x 6 cube with
a horizontal hole of radius 2 units at its center is shown in Fig. 3. The
coordinate axes follow the standard color coding convention: XYZ = RGB,
meaning X is represented in red, Y in green, and Z in blue.

Figure 3: Sample 3D model

The corresponding PLaSM script, which adheres to the original functional
programming paradigm, is shown in Fig. 4.

cube = CUBOID([6, 6, 6])

hole = CYLINDER([2, 6])(64)

hole = R([1, 3])(PI/2)(hole)

hole = T([1, 2, 3]1)([0, 3, 3])(hole)

hollow_cube = DIFFERENCE([cube, hole])
VIEW(hollow_cube)

Figure 4: Corresponding script written with the original PLaSM
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Some aspects of the script require further explanation. To begin with,
the original PLaSM operates in any dimension, which is why it uses the
keyword CUBOID instead of dimension-specific keywords such as SQUARE or
CUBE. Additionally, most functions in PLaSM are designed to accept a single
parameter, necessitating extra brackets in CUBOID([6, 6, 6]) rather than
allowing a direct input like CUBOID(6, 6, 6).

The functional programming paradigm in PLaSM relies heavily on func-
tions that return other functions. For instance, on line 2, CYLINDER([2,
6]) defines a cylinder with a radius of 2 units and a height of 6 units. This
expression returns a function, which then receives an additional argument,
64, specifying that the cylindrical surface should be approximated using 64
planar facets. In other words, the base of the cylinder is a regular polygon
with 64 sides.

A particularly interesting case arises on line 3, where the R command rep-
resents rotation. In 3D, one would typically expect a single axis to define the
rotation. However, in four or more dimensions, a rotation must be defined by
specifying two axes that span a plane, with the rotation occurring perpen-
dicular to this plane. Consequently, typing R([1, 3]) results in a rotation
about axis 2 (the Y-axis). This expression returns a function that takes an
angle in radians, in this case, PI/2. That function, in turn, returns another
function that finally receives the object hole and applies the rotation. We
found that this hierarchical function application was often confusing for stu-
dents, and the use of radians instead of degrees further complicated their
understanding.

On line 4, the command T([1, 2, 3]) represents a translation along
the X, Y, and Z axes, in that order. This expression returns a function that
takes another argument, [0, 3, 3], which specifies that the object moves
by 0 units in the X direction, 3 units in the Y direction, and 3 units in the Z
direction. Again, this returns another function that ultimately receives the
hole object and applies the translation.

It is important to note that both R and T return a new 3D object rather
than modifying the original one in place. As a result, modifying an object
requires overwriting the old variable with the transformed version. Many stu-
dents found this unintuitive, as they expected transformations to be applied
directly to the original object.

Finally, on line 5, the object hole is subtracted from the object cube to
create the final shape. This operation generates a new object rather than
modifying cube in place, which would have been the more intuitive behavior
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for many students.

D.

The same script, rewritten using our procedural wrapper, is shown in Fig.

cube CUBE(®)

hole CYL(2, 6)
ROTATE(hole, 90, Y)
MOVE (hole, 0, 3, 3)
SUBTRACT (cube, hole)
SHOW (cube)

Figure 5: The same script written with our procedural PLaSM wrapper

Note a few things:

e On line 1, defining a 6 X 6 x 6 cube is simpler and more intuitive by
typing CUBE(6) instead of CUBOID([6, 6, 6]).

e On line 2, the value 64 is now a default parameter, reducing confusion
for students. If a finer resolution is needed, it is still possible to specify
it explicitly, for example, by typing CYL(2, 6, 128).

e Object hole is rotated in place, meaning that no new object is cre-
ated. Typing ROTATE (hole, 90, Y) issimpler and more intuitive than
R([2, 3])(PI/2) (hole). Additionally, all angles have been converted
from radians to degrees to further simplify usage.

e On line 4, object hole is translated in place, ensuring that no new
object is created. Typing MOVE(hole, 0, 3, 3) is simpler and more
intuitive than T([1, 2, 3]1) ([0, 3, 3]) (hole).

e The function SUBTRACT modifies the object cube in place, providing a
more intuitive syntax compared to DIFFERENCE( [cube, holel).

e Syntax highlighting has been introduced to help students easily identify
typos and improve code readability.

To summarize this example, while the functional programming paradigm

may not present a challenge for an experienced computer scientist, it proved
to be a significant hurdle for our students, many of whom had limited pro-

gramming experience.

We hope the reader now understands why we felt
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compelled to develop a procedural wrapper for PLaSM and simplify its us-
age for students.

More details on the original PLaSM language can be found in [1]. The
procedural wrapper is freely available on GitHub [90], and numerous exam-
ples illustrating its use can be found in the free textbook [91].

8. Automated Server-Side Grading of Student Assignments

Now that the reader has a clear understanding of how 2D and 3D models
are created with PLaSM, we turn our attention to automated server-side
grading of student assignments. As mentioned in Section 4, receiving real-
time feedback is the cornerstone of the self-paced 3D modeling course. The
basic idea behind this approach is straightforward.

Consider a scenario where a student’s task is to create a 3D model named
design. While developing their model, they can edit and run the PLaSM
script as many times as needed. Each time the script is executed, the source
code is sent to the server, evaluated using PLaSM, and the corresponding
STL file (or an error message) is returned to the student’s web browser for
display.

Once the student finalizes their 3D model, they submit it for grading. At
this stage, the script is sent to the server again, but this time it is accom-
panied by an assignment-specific Python grading script prepared by the as-
signment creator. The student’s script is executed before the grading script.
The grading script then performs three validation tests, described below, and
any textual output is returned to the student’s web browser for display.

If the student’s solution passes all tests, a success message is displayed.
Otherwise, the student receives the output generated by the grading script,
along with their solution and the correct solution. Both models are displayed
in the same view but differentiated by color, making it easier for the student
to identify mistakes.

In the following, we take a closer look at the three validation tests per-
formed during the grading process.

Bounding box test

The bounding box of the student’s object design is computed and com-
pared against the expected values specified in the assignment-specific grad-
ing script. If the values match, the object design passes the bounding box
test. Otherwise, it fails. If this test fails, the remaining two tests are not
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performed. Instead, a message is displayed in the student’s web browser,
providing details about the outcome of the bounding box test.

Inclusion test

This test is only performed if the bounding box test passes. On the
server, PLaSM is used to generate a reference object, denoted as interior_,
which is guaranteed to be entirely contained within the correct solution. For
instance, if the correct solution is a 6 X 6 X 6 cube, an appropriate choice for
interior_would be a cube with dimensions 5.998 x 5.998 x 5.998, translated
by 0.001 units along each axis (X, Y, and Z) to ensure it lies entirely within
the correct solution.

The inclusion test is then performed by subtracting object design from
interior_. If the result of this operation is an empty set, meaning that
interior_ is entirely contained within design, the test passes. Otherwise,
the inclusion test fails.

Complement test

This test is only performed if the inclusion test passes. On the server,
PLaSM is used to generate a reference object, denoted as exterior_, which
is guaranteed to fully enclose the correct solution as a subset. For instance,
if the correct solution is a 6 X 6 x 6 cube, an appropriate choice for exterior_
would be a cube with dimensions 6.002 x 6.002 x 6.002, translated by —0.001
units along each axis (X, Y, and Z) to ensure that the correct solution lies
entirely within it.

The complement test is then performed by subtracting object exterior_
from design. If the result of this operation is an empty set, meaning that
design is entirely contained within exterior_, the test passes. Otherwise,
the complement test fails.

9. Example

To illustrate the server-side grading process in more detail, assume that
the student’s task is to create the 3D model shown in Fig. 3. The assignment
must be formulated with sufficient precision to eliminate any ambiguity re-
garding the shape, location, or orientation of the 3D model:

Create and display a 6 X 6 X 6 cube lying entirely in the first octant, with one
vertex coinciding with the origin (0,0,0). The cube should have a cylindrical
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through-hole of radius 2 units whose axis is parallel to the X-axis and passes
through the center of the cube. The resulting 3D object should be named cube.

The name of the 3D object is explicitly specified as part of the assignment.
While it would be possible to extract this information from the SHOW com-
mand in the student’s script, doing so would unnecessarily complicate the
grading script. For this reason, we typically do not implement such automa-
tion.

Once the student completes their 3D model and submits it for grading,
the PLaSM script is sent to the server along with an assignment-specific
grading script prepared by the assignment creator. Both scripts are executed
sequentially on the server. The grading script consists of three validation
tests, which we will examine in detail.

Bounding box test

The bounding box of any PLaSM model can be obtained using the func-
tions MINX, MAXX, MINY, MAXY, MINZ, and MAXZ. For this specific assignment,
the mathematically exact bounding box is (0,6) x (0,6) x (0,6). How-
ever, since PLaSM uses double-precision arithmetic, the computed bounding
box may include small numerical inaccuracies. For example, for this par-
ticular model, the computed bounding box is (-4.76837158203125e-07,
6.000000476837158) x (0, 6) x (-4.76837158203125e-07, 6).

To accommodate these minor numerical deviations, we introduce a small
positive tolerance value tol, typically between 1e-3 and 1e-6, depending
on the model. Additionally, we round the computed bounding box values
to mitigate the impact of floating-point precision issues. The following code
illustrates the bounding box test for this assignment:

tol = 1e-3

minx = round (MINX(cube), 3)

maxx = round(MAXX(cube), 3)

if minx < 0 - tol or maxx > 6 + tol:
print(f"In the X direction, your model spans the interval \
({minx}, {maxx}) but it should span the interval (0, 6).")
return False

miny = round (MINY(cube), 3)
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maxy = round(MAXY(cube), 3)

if miny < 0 - tol or maxy > 6 + tol:
print(f"In the Y direction, your model spans the interval \
({miny}, {maxyl}) but it should span the interval (0, 6).")
return False

round (MINZ(cube), 3)

maxz = round(MAXZ(cube), 3)

if minz < 0 - tol or maxz > 6 + tol:
print(f"In the Z direction, your model spans the interval \
({minz}, {maxz}) but it should span the interval (0, 6).")
return False

minz

For instance, if the student mistakenly creates the cube in the fourth
octant instead of the first, the X-axis test will pass, but the Y-axis test will
fail. The resulting error message will be:

In the Y direction, your model spans the interval (-6, 0) but
it should span the interval (0, 6).

Additionally, the student’s model will be displayed alongside the correct
solution, as shown in Fig. 6.

Inclusion test

If the bounding box test passes, the inclusion test is performed next. This
test generates an auxiliary 3D object, interior_, which is a subset of the
correct solution. For this particular assignment, interior_ can be created
as follows:

interior_ = CUBE(6 - 2*tol)
MOVE (interior_, tol, tol, tol)
hole_ = CYL(2 + tol, 6)
ROTATE(hole_, 90, Y)

MOVE (hole_, O, 3 + tol, 3 + tol)
SUBTRACT (interior_, hole_)

The dimensions of interior_ are slightly reduced, and the radius of the
cylindrical hole is slightly increased to ensure that interior_ is entirely
contained within the correct solution. To verify whether interior_ is a

17



Figure 6: Student’s solution (red) displayed alongside the correct solution (green).

subset of the student’s solution cube, the former is subtracted from the latter.
If the result is an empty set, the inclusion test passes; otherwise, it fails.
PLaSM provides the function EMPTYSET for this purpose:

SUBTRACT (interior_, cube)

if not EMPTYSET (interior_):
print ("Your 3D model failed the inclusion test.")
return False

If the inclusion test fails, the student will receive the following message:
Your 3D model failed the inclusion test.

Additionally, their 3D model will be displayed alongside the correct solu-
tion, as shown in Fig. 7.

Complement test

If the inclusion test passes, the final validation is the complement test.
This test generates another auxiliary 3D object, exterior_, which is a su-
perset of the correct solution. For this assignment, exterior_ can be created
as follows:
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Figure 7: Student’s solution (red) displayed alongside the correct solution (green).

exterior_ = CUBE(6 + 2*tol)

MOVE (exterior_, -tol, -tol, -tol)
hole_ = CYL(2 - tol, 6 + 2%tol)
ROTATE(hole_, 90, Y)

MOVE (hole_, 0, 3 - tol, 3 - tol)
SUBTRACT (exterior_, hole_)

Here, the cube’s dimensions are slightly increased, and the cylindrical
hole’s radius is slightly reduced to ensure that exterior_ fully contains the
correct solution. To verify whether exterior_ is a superset of the student’s
solution cube, the latter is subtracted from the former. If the result is an
empty set, the complement test passes; otherwise, it fails. Since the SUBTRACT
function modifies its first argument in place, a copy of the student’s model
is created before the operation:

cube_test_ = COPY(cube)

SUBTRACT (cube_test_, exterior_)

if not EMPTYSET(cube_test_):
print ("Your 3D model failed the complement test.")
return False

If the complement test fails, the student will receive the following message:

Your 3D model failed the complement test.
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Additionally, their 3D model will be displayed alongside the correct solu-
tion, as shown in Fig. 8.

Figure 8: Student’s solution (red) displayed alongside the correct solution (green).

10. Conclusions

We presented a novel self-paced, instructor-assisted approach to teaching
solid modeling and CSG as an alternative to traditional classroom instruc-
tion. We discussed the advantages of using a scripting-based CAD system
for learning solid modeling and CSG, compared to traditional CAD software.
We explained our choice of the Programming Language of Solid Modeling
(PLaSM) over other scripting CAD tools, and described the modifications
we made to enhance its usability for educational purposes.

Furthermore, we detailed the implementation of automated server-side
grading of student assignments, which serves as the cornerstone of the self-
paced course. The structure of an introductory solid modeling course based
on PLaSM is presented in Appendix A.

Appendix A. Sample 3D Modeling Course Based on PLaSM

In this introductory self-paced course, students will use PLaSM (Program-
ming Language of Solid Modeling), a Python-based scripting CAD tool, to
learn fundamental concepts in computational design, constructive solid ge-
ometry (CSG), and parametric modeling, while gaining hands-on experience
in 2D and 3D modeling for engineering and design applications.
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By the end of the course, students will:

Understand the basic principles of PLaSM and its applications in com-
putational design.

Develop proficiency in using PLaSM commands for creating and mod-
ifying geometric models.

Learn how to structure and optimize CAD scripts for efficiency and
readability.

Gain experience in exporting models for 3D printing and other fabri-
cation techniques.

Explore advanced modeling techniques including transformations, ex-
trusions, and Boolean operations.

Section 1: Fundamental Concepts

Introduction to PLaSM as a scripting-based CAD tool.
Importance of using uppercase for PLaSM keywords for clarity.

Best practices for naming objects to avoid conflicts with PLaSM key-
words.

Exporting 3D models as STL files for fabrication.
Creating basic geometric primitives:

— Squares with SQUARE (positioned in the first quadrant).
— Rectangles with RECTANGLE (positioned in the first quadrant).
— Using BOX to create rectangles in any location in the XY plane.

— Circles with CIRCLE (centered at the origin).

Default object colors in PLaSM and modifying them using the COLOR
command.

Using predefined colors (e.g., BLUE, YELLOW, CYAN) and material colors
(e.g., WOOD, COPPER, GOLD).

Displaying objects using the SHOW command.
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Section 2: Basic 2D Modeling

Creating fundamental 2D elements:

— Points with POINT.

— Rings with RING.

— Arcs with ARC.

— Triangles with TRIANGLE.

Displaying multiple objects together using SHOW.
Boolean operations:

— Union of objects using UNION.

— Intersection of objects using INTERSECTION.

— Creating convex quadrilaterals with QUAD.

— Constructing non-convex quadrilaterals by combining triangles.

— Subtracting overlapping objects with SUBTRACT.

Section 3: Transition to 3D Modeling

Creating regular polygons using the second parameter in the CIRCLE
command.

Extruding planar objects into 3D solids using PRISM.

Constructing prisms based on various 2D shapes (e.g., squares, rectan-
gles, polygons, circles, rings, triangles, quadrilaterals).

Combining prisms to form complex 3D objects.

Creating hollow objects by subtracting prisms of different heights.
Handling overlapping surfaces to eliminate unintended color mixing.
Erasing sections of planar and 3D objects.

Intersecting 3D objects with planes parallel to the XY, XZ, and YZ
planes.

Constructing 3D objects based on their orthogonal views.
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Section 4: Transformations and Movements

e Translating points and objects in the XY plane.

e Combining multiple translations in different directions.

Section 5: Advanced Transformations

e Splitting planar objects along lines parallel to the X and Y axes.

Splitting 3D objects along planes parallel to the XY, XZ, and YZ
planes.

Translating objects in the Z direction.

Reflecting planar objects about lines parallel to the X and Y axes.

Reflecting 3D objects about planes parallel to the XY, XZ, and YZ
planes.

e Scaling objects along the X, Y, and Z axes.

Section 6: Rotations and Transformations

e Rotating objects in the XY plane.

e Using positive angles for counter-clockwise rotations and negative an-
gles for clockwise rotations.

e Selecting appropriate centers of rotation.

e Combining rotation and translation.

Section 7: Combining Transformations

e Integrating multiple transformations in the XY plane.

Section 8: Complex Modeling and Color Customization

e Applying CSG techniques learned in previous sections.
e Understanding and using RGB color codes.

e Defining custom colors and retrieving RGB values online.
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Section 9: Advanced 3D Rotations
e Rotating 3D objects about the X and Y axes.

e Using the Right-Hand Rule to determine positive and negative rota-
tions.

e Applying multiple rotations and translations to position objects cor-
rectly.

Section 10: Complex 3D Objects

e Simplifying prism creation using predefined commands (CUBE, BOX,
CYLINDER, TUBE).

e Generating advanced 3D shapes such as spheres, cones, and tori.
e Constructing convex hulls from points in both 2D and 3D.
e Combining transformations and Boolean operations to develop sophis-
ticated 3D models.
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