
Self-Paced, Instructor-Assisted Approach

to Teaching SQL

Pavel Solina,b

aUniversity of Nevada, Reno, 1664 N Virginia St, Reno, NV 89557, USA
bNCLab, 450 Sinclair St, Reno, NV 89501, USA

Abstract

We present a novel approach to teaching Structured Query Language (SQL)
suitable for both college classroom environment and asynchronous remote
instruction. Students do not sit passively, listening to lectures or watch-
ing tutorial videos. Instead, they spend their time (including lecture time)
working actively at their own pace through bite-sized tutorials, examples, ex-
ercises, practical tasks, and quizzes. They get much more hands-on practice
than in the traditional lecture + homework model. Their work is checked in
real time by an AI-based software platform which also provides instant help
and guidance as needed. Students must prove mastery of each concept before
being able to move on to the next one. The instructor does not lecture in
the traditional way. Instead, s/he interacts with students individually, and
provides personalized help and assistance as needed. Students not only enjoy
the one-to-one interaction with their instructor much more than listening to
a lecture, but they also greatly benefit from it. In this paper we provide a
concise overview of the teaching method, and then we focus on automated
server-side analysis of SQL queries, which is the cornerstone of the self-paced
SQL course. We introduce a number of Python-based SQL analyzers for
various types of queries, and present sample code. Our SQLGrader library
is freely available on Github under an open source license.

Keywords: Structured Query Language (SQL), Competency-based
education (CBE), Online learning, Self-paced learning, Asynchronous
learning, Learning-by-doing, NCLab

Email address: solin@unr.edu, pavel@nclab.com (Pavel Solin)

Preprint submitted to Journal of Computational and Applied Mathematics December 25, 2024

1. Introduction

SQL (Structured Query Language) is a domain-specific language designed
for managing data held in a relational database management system (RDBMS)
or for stream processing in a relational data stream management system
(RDSMS). With the growing importance of data in all areas of human ac-
tivity, SQL has become an essential job skill in a number of occupations
including but not limited to data engineers, data scientists, data analysts,
database administrators, software developers, web designers, and many oth-
ers.

Various approaches to teaching SQL have been discussed by both edu-
cators and practitioners. The following representative papers, and the ref-
erences therein, offer a broad view of modern approaches to teaching SQL,
including gamification, visualization tools, and flipped classroom methods:

In [1] the authors compare traditional teaching methods of SQL with
gamified approaches, analyzing the effectiveness of each method in student
engagement and learning outcomes. The study [2] explores the impact of
interactive visual learning tools in teaching SQL, highlighting how visual
aids improve students’ comprehension of database concepts and query con-
struction. The paper [3] presents a teaching method where students learn
SQL by mapping natural language queries to semantic structures, focusing
on improving their query formulation skills. In [4] the authors discuss the ap-
plication of flipped classrooms in teaching SQL, assessing both the students’
perspectives and the quantitative outcomes of using this approach. The pa-
per [5] discusses a teaching experiment using collaborative problem solving in
online environments to teach SQL, comparing this method’s efficiency with
traditional individual problem-solving techniques.

The present study builds on our recent work [6] and [7] where the self-
paced, instructor-assisted teaching method was introduced and discussed in
the context of Linear Algebra and Python programming. The outline of the
present paper is as follows: A brief overview of SQL is presented in Section 2.
The difference between skills and knowledge is discussed in Section 3. Section
4 describes the teaching method, and Sections 5 - 8 discuss automated server-
side analysis and grading of SQL queries. This is a cornerstone of the self-
paced SQL course because it validates the students’ understanding of the
material, giving them confidence in what they have learned, and allowing
them to progress through the course efficiently. The SQLGrader library
presented in this paper is freely available on Github under an open source

2

license. In Section 9 we share repository and license information, and discuss
code integration and adaptability. Conclusions are presented in Section 10,
and sample code is shown in Appendix A.

In particular, our previous study [7] applies to teaching SQL which, like
Python, is a programming language. It would not be possible to provide a
detailed discussion of the teaching methodology here without creating a sig-
nificant overlap with our previous papers. Therefore, we recommend that the
reader retrieves [7] and goes through Sections 1 (Introduction), 3 (Lectures,
Homework, and Flipped Classroom), 4 (Self-Paced Learning by Doing), 5
(Interactive Course Materials), 6 (Importance of Real-Time Feedback), 7
(Real-Time Progress Monitoring), 8 (Results of a Student Survey) and 9
(Representative Student Testimonials) and Appendix A (Traditional Instruc-
tion Versus Self-Paced Learning By Doing From a Student’s Point of View).
We also recommend that the reader retrieves the original paper [6] and goes
at least through Section 1 (Introduction) and Subsections 3.1 (Self-Paced,
Instructor-Assisted Learning vs. Flipped Classroom), 3.3 (Benefits for the
Students), 3.4 (Benefits for the Instructor), 3.6 (Student Comments), and
Appendix A (Tips, Tricks, and Lessons Learned).

2. Brief Overview of SQL

The origins of SQL date back to the early 1970s when it was developed
by Donald D. Chamberlin and Raymond F. Boyce at IBM. The language
was originally called SEQUEL (Structured English Query Language), but it
was later abbreviated to SQL due to trademark issues. The primary goal
of SQL was to provide a more intuitive and accessible way to interact with
databases, allowing users to query, insert, update, and delete data without
needing to understand the underlying structure of the database.

The significance of SQL lies in its standardization and widespread adop-
tion. SQL became the standard language for relational database manage-
ment after it was standardized by the American National Standards Institute
(ANSI) in 1986 and by the International Organization for Standardization
(ISO) in 1987. The language’s ability to handle large datasets, its declarative
nature (where users specify what data to retrieve rather than how to retrieve
it), and its use of simple, English-like syntax contributed to its success. To-
day, SQL is used in almost every application that deals with structured data,
from simple web applications to complex enterprise systems, making it a cor-
nerstone of modern data management and analysis.

3

Academic literature has often highlighted the evolution and importance of
SQL. For instance, Melton and Simon [8] provided a comprehensive overview
of SQL’s evolution and its impact on database technology. They discuss
how SQL has expanded from a simple query language into a robust tool
for defining, controlling, and manipulating data across various industries.
Codd’s seminal work [9] on relational databases, which laid the groundwork
for SQL, is another critical reference in the academic study of databases.
SQL’s ability to provide a common language for diverse database systems
has been crucial in enabling interoperability between systems, thus driving
innovation and collaboration across different technological platforms.

Moreover, in more recent research, the scalability and optimization of
SQL queries have been a significant area of focus. Researchers like Chaudhuri
[10] have explored the ways in which SQL query optimization can improve the
performance of large-scale databases, a crucial consideration as data volumes
continue to grow. The language’s adaptability and continuous improvement
have ensured its relevance in an ever-evolving technological landscape, mak-
ing SQL not just a tool of the past, but a key player in the future of data
management.

3. Knowledge, Skills, and the Skills Gap

In order to fully appreciate the teaching method presented here, one needs
to acknowledge the difference between learning new knowledge and acquiring
new skills. The distinction between knowledge and skills is foundational in
understanding how people learn and perform tasks.

Knowledge refers to the theoretical or factual information that someone
possesses. It’s what one knows, including concepts, facts, principles, and
theories. For example, knowledge might include knowing the laws of physics,
understanding historical events, or being aware of mathematical formulas
or SQL keywords. It is often acquired through reading, studying, or being
taught.

Skills, on the other hand, refer to the ability to apply knowledge to per-
form tasks effectively. Skills are what one can do, and they often require
significant amounts of both practice and time to develop. For instance, be-
ing able to solve complex math problems, conduct scientific experiments,
or write complex SQL queries. Skills involve practical application and are
typically developed through hands-on experience, repetition, and practice.

4

In summary, knowledge is about comprehension and awareness, while
skills are about action and application. Knowledge can often be acquired
passively (through listening, reading, or watching), whereas skills usually
require active practice. Knowledge is the foundation upon which skills are
built. For instance, knowing a language (knowledge) is different from being
able to speak it fluently (skill). In many cases, both are needed to be compe-
tent in a particular field: knowledge provides the necessary understanding,
and skills enable you to apply that understanding effectively.

Nowadays, most colleges and universities place emphasis on knowledge,
and students are expected to acquire the corresponding skills by completing
a limited number of homework assignments. However, this approach does
not work, and employers consistently report that graduates do not possess
sufficient skills when entering the workforce. The gap between the skills of
graduates and the expectations of employers, referred to as the ”skills gap”,
is a well-documented issue in academic and industry literature.

For instance, [11] highlights the concern of employers that graduates often
lack key skills necessary for the workplace, despite having academic quali-
fications. The study [12] discusses the discrepancy between the skills that
graduates possess and those that employers find necessary, with a particu-
lar emphasis on the lack of ”soft skills”. The report [13] from McKinsey
highlights the global issue where many employers feel that graduates are
not adequately prepared for the workforce, particularly in terms of practical
skills. In [14] the authors discuss the challenges universities face in helping
students develop the generic skills that are highly valued by employers.

In the context of SQL, the paper [15] addresses the skills gap among
graduates and suggests curriculum improvements to better prepare students
for industry needs. The study [16] discusses the challenges students face in
learning SQL and the subsequent gap in skills when they enter the workforce.
In [17], the authors explore the effectiveness of different teaching approaches
to SQL and database design and highlights the skill deficiencies observed in
graduates. Last but not least, the paper [18] examines the SQL skills gap
and proposes experiential learning as a method to enhance SQL competencies
among students.

4. Brief Overview of Self-Paced, Instructor-Assisted Learning

In traditional lectures, students are asked to sit, listen, take notes, and
stay focused over long periods of time such as 75 or even 90 minutes. How-

5

ever, it is challenging for the students to keep their attention alive for so
long. Furthermore, they are not able to practice and master each concept
before proceeding to the next one. They are also not able to obtain personal-
ized attention of the instructor. This model was established during the 2nd
industrial revolution, and in [19] it is called ”assembly line education”.

Some authors present the so-called ”flipped classroom” as a remedy (see
[6, 7] for references). In this model, students are asked to learn the new
material on their own, outside of class, typically through videos, readings, or
online lectures. They may also be asked to complete assignments or quizzes
to ensure they have understood the material. Then, class time is used for
engaging in activities that apply the concepts learned in the pre-class materi-
als. This can include problem-solving, discussions, group work, or hands-on
projects. Our problem with the flipped classroom is that the instructor is
not available to help students when they are learning the new material and
actually need help.

For this reason, initially in the context of Linear Algebra [6], we intro-
duced an alternative model where students work actively 100% of the time,
using an advanced interactive learning platform combined with real-time indi-
vidual assistance of their instructor. The methodology met with enormously
positive student feedback. It was equally successful when it was extended to
teaching Python programming in [7]. Below we present a brief summary of
the teaching method, to avoid excessive overlap with our previous papers.

Instead of sitting and listening, or learning on their own without help, stu-
dents work actively 100% of the time under the supervision of an instructor.
They use their own devices and work at their own pace through bite-sized
tutorials, examples, exercises, and graded practical tasks and quizzes. Their
work is checked by a cloud platform in real-time, instantly validating their
understanding of the material and providing help where needed. Students
must prove mastery of each concept before being allowed to tackle the next
one. Instead of lecturing, the instructor assists each student individually.
This makes a huge positive difference for the students, and it also allows the
instructor to understand much better how each student performs and where
they need help. After 10+ years of using this approach, we are convinced
that nothing can replace a one-to-one interaction between the student and
his/her instructor.

6

5. Automated Analysis of SQL Queries

A cornerstone of the self-paced, instructor-assisted teaching method is an
advanced software platform such as [20] which is capable of checking stu-
dents’ solutions to exercises and tasks in real time, and providing them with
detailed instant feedback. Students need this feedback in order to validate
their understanding of the material, gain confidence, and progress through
the coursework efficiently. We discussed this aspect of the methodology in
detail in the context of Linear Algebra in [6] and in the context of Python
programming in [7]. In the context of SQL, automated real-time feedback is
equally important.

When checking students’ queries, we first analyze their output and then
also their SQL code. To begin with, the following three functions compare
the output of the student’s query with the output of the master solution:

Column Presence Analyzer

Function sql column presence analyzer identifies columns which are
correctly included, missing, or unexpectedly present in the student’s output
compared to the output of the master solution. It provides specific feedback
about which columns are correctly included, which are missing, and which
should not have been included.

Column Order Analyzer

Function sql column order analyzer ensures that the order of columns
in the output of the student’s query matches the order of columns in the
output of the master solution. If the columns are out of order, it provides
feedback indicating which columns are not correctly ordered.

Row Analyzer

Function sql row analyzer checks if the rows in the output of the stu-
dent’s query match those in the output of the master solution, in terms of
both content and ordering. It points out discrepancies, whether there are
missing rows, excess rows, or issues with the ordering of rows. Its function-
ality is as follows:

• Convert Rows to Hashable Objects: The function first converts
the rows in the outputs of both the master solution and the student’s
solution into tuples, allowing them to be used in set operations.

7

• Compare Rows Via Set Operations: It performs set operations to
identify rows that are correct (appear in both sets), missing (appear
only in the solution), and excessive (appear only in the student’s result).

• Detect Discrepancies: The function also checks for discrepancies by
comparing the rows in the solution output and student’s output. If
there are discrepancies, it generates corresponding error messages.

• Check Ordering: The function checks whether the rows in the stu-
dent’s output are ordered correctly. If not, it reports the rows that are
out of order.

• Return Value: The function returns a list of error messages (as text
strings) if problems are found, or False if there were no errors.

For illustration, the source code for the sql row analyzer function is pre-
sented in Appendix A.

Code Analyzer

In contrast to the above functions which analyze the output of SQL
queries, the sql code analyzer function analyzes the SQL code of the stu-
dent’s query, and points out problems in case the output differs from the
output of the master solution. This function does the following:

• Normalization and Sanitation: It standardizes SQL code by remov-
ing non-essential elements such as comments and excess formatting.

• Keyword Analysis: The function evaluates the presence and correct-
ness of SQL keywords. It identifies missing or excessive keywords and
checks their syntactical order.

• Dynamic Element Handling: Adapting to queries involving dy-
namic SQL elements like CURRENT USER, the function personalizes the
grading process by replacing these elements with specified user names,
enhancing the relevance of feedback.

• Feedback Generation: For any identified errors, sql code analyzer

provides detailed, actionable feedback, pinpointing the exact nature of
the mistakes and suggesting how to correct them.

8

6. SELECT Statement Grader

The elementary analyzer functions described above are used to build more
complex grader functions for individual SQL statements. To begin with,
the SELECT Statement Grader (function sql select grader) is designed
to assess the correctness of SELECT statements written by students. This
function does several things:

Initial Tests and Code Sanitation

The analysis begins with checking for any critical issues such as missing
output. If the student’s query does not produce any results, immediate
feedback is provided, urging the student to review his or her query and try
again. Both the solution and student codes are then sanitized using the
function sql code sanitizer which cleans up the code by removing non-
essential elements such as comments or excessive white spaces. This step is
done to provide a cleaned student and solution queries suitable for further
inspection with the function sql code analyzer.

Analyzing Columns

The function checks whether all required columns are present in the out-
put of the student’s query. It uses the function sql column presence analyzer

to perform this check, ensuring that no required columns are missing and no
extra columns are included. If the query involves aggregate functions such
as MAX, COUNT, etc., then the grader ensures that these are used correctly.
If the student incorrectly uses or omits necessary aggregate functions, then
specific feedback is provided. The order of columns is also checked using the
function sql column order analyzer.

Analyzing Rows

Once the columns in the output of the student’s query are correct, func-
tion sql row analyzer is used to check the rows. This part of the grading
ensures that the SELECT statement not only selects the correct columns but
also fetches the right set of rows according to the conditions specified in the
query. All missing or excess rows are reported.

9

Analyzing SQL Code

If the output of the student’s query is not correct, function sql code analyzer

is called to check the SQL code of the query. This includes checking its syn-
tactical and functional correctness, ensuring that it aligns with SQL stan-
dards and the specific requirements of the assignment. The Code Analyzer
is able to precisely pinpoint the error in the student’s query.

Error Reporting

If any discrepancies are found in the columns or rows of the output, or
in the SQL query itself, then detailed feedback is provided. This feedback
includes specific errors, corrective suggestions, and useful hints that help the
student understand what went wrong and how to correct it.

The SELECT Statement Grader plays a fundamental role in teaching
students the intricacies of writing correct and efficient SQL SELECT queries.
By providing multi-faceted, detailed feedback on every aspect of the query,
the grader not only helps students to improve their incorrect solutions, but it
also aids in their understanding of how SQL queries should be structured and
executed. This comprehensive approach ensures that students learn SQL in
a manner that emphasizes both accuracy and efficiency, making them well-
prepared for real-world data manipulation and analysis tasks.

7. Additional SQL Statement Graders

In addition to the SELECT Statement Grader described above, we also
use the following Statement Graders for other SQL statements:

CREATE/ALTER Table Grader

Function sql create or alter table grader grades SQL statements for
creating or altering tables. It verifies that all required columns, their types,
and any modifications are correctly defined. This function provides detailed
error messages related to column definitions and table alterations.

Table Constraint Grader

Function sql table constraints grader assesses the implementation of
constraints in table definitions. It ensures that primary, foreign keys, and
other constraints are correctly applied. This function identifies and reports
missing or unnecessary constraints.

10

INSERT Grader

Function sql insert grader evaluates the correctness of INSERT oper-
ations. It confirms that inserted data adheres to defined constraints and
correctly populates tables. This function highlights discrepancies in data
entries, particularly focusing on NOT NULL constraints and field accuracy.

DELETE Grader

Function sql delete grader grades DELETE operations. It verifies that
only the appropriate records are removed based on the task definition. This
function provides a detailed error message when incorrect records are affected
or conditions are not applied correctly.

DROP TABLE Grader

Function sql drop table grader assesses the DROP TABLE command. It
ensures that the specified tables are correctly dropped from the database.
This function alerts students if a table that should have been dropped re-
mains.

Function Grader

Function sql function grader analyzes SQL functions written by stu-
dents. It checks for immutability, handling of NULL values, and the correct
data type of the function as defined in the function’s metadata. If discrepan-
cies are found between the student’s function and the solution, then detailed
feedback is provided, highlighting the parameter in question and the expected
value.

Function Parameters Grader

Function sql function parameters grader specifically checks the pa-
rameters used in defining SQL functions. It verifies that all parameters of
the student’s function match those of the solution in both type and order.
This function returns detailed feedback if any parameters are missing, mis-
placed, or incorrectly defined.

11

Function Tests Grader

Function sql function tests grader checks the correctness of SQL func-
tions by running them with test inputs and comparing the outputs against
expected results. It evaluates whether the function returns the correct data
for given test cases and also checks the correctness of the function’s code
itself if discrepancies are found. This function provides a combination of
row-based and code-based feedback, making it clear where the function fails
– whether the problem is in the logic, output, or syntax.

Type Grader

Function sql type grader checks user-defined types. It compares the
attributes of types defined by students against those specified in the solu-
tion, including data type, nullability, and other constraints. A detailed error
message is provided if any discrepancies are found.

8. Example

We will illustrate the usage of the SELECT Statement Grader on a con-
crete example which involves the well-known database (schema) world. This
schema is part of the MySQL database system [21], and it is often used for
learning and practicing SQL queries. It contains data about many countries,
cities, and languages of the world, providing a realistic dataset for work-
ing with relational databases. This schema is commonly used in tutorials,
SQL exercises, and courses because it presents a practical, structured dataset
suitable for educational purposes.

Readers who know SQL will benefit from this example the most, but even
readers who aren’t familiar with SQL will get an idea of what the SELECT
Statement Grader does and how the instant feedback benefits the students.
Let’s begin with a brief overview of the schema world.

Schema world

The schema world consists of three tables city, country and countrylanguage.
To begin with, table country has 239 rows (one per country) and the follow-
ing 15 columns:

• code: a unique country code (e.g., ’USA’ for the United States).

• name: the name of the country.

12

• continent: the corresponding continent.

• region: more specific geographic region.

• surfacearea: the surface area of the country in square kilometers.

• population: the population of the country.

• gnp (Gross National Product) and gnp old: economic data.

• Other fields related to government form, capital, life expectancy, etc.

To get a better idea of how the data looks like, let’s display four selected
columns of this table by typing a simple query,

SELECT code, name, continent, surfacearea FROM world.country;

The output of this query is

code | name | continent | surfacearea

-----+----------------------+---------------+------------

AFG | Afghanistan | Asia | 652090.0

EGY | United Arab Republic | Africa | 1001450.0

ANT | Netherlands Antilles | North America | 800.0

ALB | Albania | Europe | 28748.0

DZA | Algeria | Africa | 2381740.0

...

The second table city has 4079 rows (one per city) and the following five
columns:

• id: a unique identifier for the city.

• name: the city’s name.

• countrycode: a foreign key linking the city to the country it belongs
to.

13

• district: the district or state the city is located in.

• population: the population of the city.

For illustration, let’s display a few rows of this table by typing

SELECT * FROM world.city;

Here is the corresponding output:

id | name | countrycode | district | population

---+----------------+-------------+---------------+-----------

1 | Kabul | AFG | Kabol | 1780000

2 | Qandahar | AFG | Qandahar | 237500

3 | Herat | AFG | Herat | 186800

4 | Mazar-e-Sharif | AFG | Balkh | 127800

5 | Amsterdam | NLD | Noord-Holland | 731200

...

Finally, the third table countrylanguage stores data about languages spoken
in the 239 countries. This table has 984 rows and four columns:

• countrycode: A foreign key linking to the country table.

• language: The name of the language.

• isofficial: Whether the language is an official language of the coun-
try (Boolean).

• percentage: The percentage of the population that speaks the lan-
guage.

The data can be viewed by typing the query

SELECT * FROM world.countrylanguage;

14

The output of this query is

countrycode | language | isofficial | percentage

------------+------------+------------+-----------

AFG | Pashto | True | 52.4

NLD | Dutch | True | 95.6

ANT | Papiamento | True | 86.2

...

With the knowledge of the schema world, we can now proceed to our actual
example.

Sample Task and Master Solution

Let’s assume that the student’s task is to find the five largest cities in
Africa where the official language is French, and display the city name, coun-
try name, and city population. The three columns in the resulting table
should be named name, country and population. The table should be
sorted by city population in descending order.

The correct query (master solution) is

SELECT city.name, country.name AS country, city.population

FROM world.city

JOIN world.country

ON world.city.countrycode = world.country.code

JOIN world.countrylanguage

ON world.countrylanguage.countrycode = world.country.code

WHERE continent = ’Africa’

AND world.countrylanguage.language = ’French’

AND world.countrylanguage.isofficial = ’True’

ORDER BY city.population DESC LIMIT 5;

And, this is the corresponding output:

15

name | country | population

-------------+----------+-----------

Antananarivo | Malagasy | 675669

Bujumbura | Burundi | 300000

Kigali | Rwanda | 286000

Toamasina | Malagasy | 127441

Antsirabé | Malagasy | 120239

It is left up to the course creator to decide whether or not to share the
expected output, or its part, with the student. Based on our experience,
sharing the expected output makes it easier for the students to debug their
queries.

Checking the Student’s Solution

The query includes a SELECT statement, therefore the SELECT Statement
Grader is used to check the result. The grader compares the output of the
student’s query with the output of the master solution. If they are identical
then the student’s solution is accepted. If not, then the SELECT Statement
Grader points out the discrepancies, and even provides hints as to what part
of the student’s query should be improved.

For illustration, suppose that the student submits the following incorrect
query,

SELECT city.name, country.name, city.population

FROM world.city

JOIN world.country

ON world.city.countrycode = world.country.code

JOIN world.countrylanguage

ON world.countrylanguage.countrycode = world.country.code

WHERE continent = ’Africa’

AND world.countrylanguage.language = ’French’

AND world.countrylanguage.isofficial = ’True’;

whose output is

16

name | name | population

-------------+------------+-----------

Bujumbura | Burundi | 300000

Antananarivo | Malagasy | 675669

Toamasina | Malagasy | 127441

Antsirabé | Malagasy | 120239

Mahajanga | Malagasy | 100807

Fianarantsoa | Malagasy | 99005

Mamoutzou | Mayotte | 12000

Kigali | Rwanda | 286000

Victoria | Seychelles | 41000

This output is obviously incorrect (wrong column headers, wrong number of
rows, table not sorted correctly). The SELECT Statement Grader will not
list all errors at once, because their number would be overwhelming. In the
first step, it will just point out the wrong column names:

Your result correctly contains the following columns:

name, population

Your result is missing the following column:

country

Your result contains one column which is not expected:

name

If the number or ordering of the columns was not correct, then this would
be reported as well.

Let’s assume that the student adjusts his or her query based on this feedback,
and submits an updated query with column names corrected:

SELECT city.name, country.name AS country, city.population

FROM world.city

JOIN world.country

ON world.city.countrycode = world.country.code

JOIN world.countrylanguage

ON world.countrylanguage.countrycode = world.country.code

17

WHERE continent = ’Africa’

AND world.countrylanguage.language = ’French’

AND world.countrylanguage.isofficial = ’True’;

The corresponding output is:

name | country | population

-------------+------------+-----------

Bujumbura | Burundi | 300000

Antananarivo | Malagasy | 675669

Toamasina | Malagasy | 127441

Antsirabé | Malagasy | 120239

Mahajanga | Malagasy | 100807

Fianarantsoa | Malagasy | 99005

Mamoutzou | Mayotte | 12000

Kigali | Rwanda | 286000

Victoria | Seychelles | 41000

The number, names, and ordering of the columns are now correct, but as the
reader can see, the rows are not correct. Also, the last column is not sorted
in descending order. Therefore the student’s query is not accepted, and the
SELECT Statement Grader provides the following additional feedback:

5 rows are correct (rows 1, 2, 3, 4, 8).

4 rows are not expected (rows 5, 6, 7, 9).

Your SQL code is missing these keywords:

ORDER BY, DESC, LIMIT

Let’s assume that the student adds the required keywords and submits the
updated query:

SELECT city.name, country.name AS country, city.population

FROM world.city

JOIN world.country

18

ON world.city.countrycode = world.country.code

JOIN world.countrylanguage

ON world.countrylanguage.countrycode = world.country.code

WHERE continent = ’Africa’

AND world.countrylanguage.language = ’French’

AND world.countrylanguage.isofficial = ’True’

ORDER BY country.population DESC LIMIT 5;

The corresponding output is

name | country | population

-------------+----------+-----------

Antananarivo | Malagasy | 675669

Toamasina | Malagasy | 127441

Antsirabé | Malagasy | 120239

Mahajanga | Malagasy | 100807

Fianarantsoa | Malagasy | 99005

This result is still wrong because the resulting table is sorted based on coun-
try population and not city population. The SELECT Statement Grader
will guide the student to find the problem:

3 rows are correct (rows 1, 2, 3).

2 rows are not correct (rows 4, 5).

Check the 2nd value population near:

ORDER BY country.population DESC LIMIT 5

Based on the feedback, the student now realizes where the final mistake was,
corrects it, and submits the correct query:

SELECT city.name, country.name AS country, city.population

FROM world.city

JOIN world.country

ON world.city.countrycode = world.country.code

19

JOIN world.countrylanguage

ON world.countrylanguage.countrycode = world.country.code

WHERE continent = ’Africa’

AND world.countrylanguage.language = ’French’

AND world.countrylanguage.isofficial = ’True’

ORDER BY city.population DESC LIMIT 5;

The query finally passes all tests, the student’s solution is accepted, and the
student is allowed to move on in the coursework.

9. The SQLGrader Library

The SQLGrader library discussed in this paper is available on Github,

https://github.com/femhub/sqlgrader

under the Creative Commons Attribution-NonCommercial 4.0 International
license. The library was originally developed for NCLab [20], but it can be
used within other online learning platforms as well. It supports multiple SQL
dialects.

The library should be installed on the server, where all grading takes
place. Depending on the online learning platform, this might require using
a suitable technology such as JSON to transfer SQL code from the client to
the server. When the grading is finished, the feedback should be transferred
back to the client, for the student to read.

Using the library involves the following typical steps:

Step 1: Cleaning SQL Code

Both the master solution and the student’s solution are cleaned using the
function sql clean and divide. This function is built upon the open-source
library SQLParse [22]. It removes comments and unnecessary white spaces,
formats the code, and divides it into individual SQL statements. These
statements are then analyzed using the corresponding statement graders.

Step 2: Executing SQL Code

After cleaning the master solution and the student’s solution, both queries
are executed, and the output is saved for further use.

20

Step 3: Grading

All statements in the student’s query are checked with the help of the
corresponding statement graders.

Step 4: Providing Feedback

If the student’s solution passes all tests, then positive feedback is pro-
vided. If any of the tests fail, the feedback from graders is passed to the
student, so that s/he can improve the solution.

10. Conclusion

We presented a novel self-paced, instructor-assisted approach to teaching
SQL. The general methodology was described rather briefly, because it was
already discussed in our previous papers. The emphasis of the present paper
was on automated analysis and grading of SQL queries. Receiving instant
feedback is extremely important for students, because this is what validates
their understanding of the material and allows them to learn efficiently at
their own pace. We introduced a number of SQL output analyzers and code
graders, and explained how they are used to build Statement Graders for
individual SQL statements. Finally, we presented the SQLGrader library
which is freely available on Github, designed to automate the analysis and
grading of complex SQL queries.

Appendix A. Source Code of the Row Analyzer

For illustration, below we present the source code of the functions get row numbers

and sql row analyzer. This is a relatively small part of the SQLGrader li-
brary, but it gives the reader an idea of how the code looks like:

def get_row_numbers(student_rows, set_of_rows):

"""Get row numbers of a set of rows in a student result

:param student_rows:

student rows

:param set_of_rows:

set of rows to be found

:return:

string - list of row numbers where the set of rows is

21

found in the student result

"""

row_numbers = []

We update rows to hashable objects (tuple)

student_rows_list = list(map(tuple, student_rows))

for i in range(len(student_rows_list)):

if student_rows_list[i] in set_of_rows:

row_numbers.append(i+1)

Get only the first three items from the list

sliced_list = row_numbers[:5]

Convert the sliced list to a comma-separated string

result = ’, ’.join(map(str, sliced_list))

Add ellipsis if there are more than three items

if len(row_numbers) > 5:

result += ’, ...’

return result

def sql_row_analyzer(sol_rows, student_rows, sol_cols,

ordering):

"""Serves to grade rows

:param sol_rows:

solution rows

:param student_rows:

student rows

:param sol_cols:

solution column names

:param ordering:

should we match the order

:return:

list - Errors are returned or False if no problem is

found

22

"""

We use Python collections to very effectively do

set operations with rows.

First, we update rows to hashable objects (tuple),

then create collections.

sol_rows_c = c(list(map(tuple, sol_rows)))

student_rows_c = c(list(map(tuple, student_rows)))

Correct columns

rows_correct = sol_rows_c & student_rows_c

Columns missing in the student result

rows_missing = sol_rows_c - student_rows_c

Excess columns in the student result

rows_excess = student_rows_c - sol_rows_c

rows_text = []

if rows_missing or rows_excess:

if rows_correct:

pl = len(rows_correct) > 1

rows_correct_text = str(len(rows_correct))

rows_correct_numbers_text = \

get_row_numbers(student_rows, rows_correct)

rows_text.append(

[

True,

"{} {} correct ({} {}). ".format(

rows_correct_text,

("rows are" if pl else "row is"),

("rows" if pl else "row"),

rows_correct_numbers_text

)

]

)

If the same number of rows is missing and not

expected this number of rows is "incorrect"

if len(rows_missing) == len(rows_excess) > 0:

23

pl = len(rows_missing) > 1

rows_missing_text = str(len(rows_missing))

rows_missing_numbers_text = \

get_row_numbers(student_rows, rows_excess)

rows_text.append(

[

False,

"{} {} not correct ({} {}). ".format(

rows_missing_text,

("rows are" if pl else "row is"),

("rows" if pl else "row"),

rows_missing_numbers_text

)

]

)

else:

if rows_missing:

pl = len(rows_missing) > 1

rows_missing_text = str(len(rows_missing))

rows_text.append(

[

False,

"%s %s missing. "

% (rows_missing_text, ("rows are" \

if pl else "row is")),

]

)

if rows_excess:

pl = len(rows_excess) > 1

rows_excess_text = str(len(rows_excess))

rows_excess_numbers_text = \

get_row_numbers(student_rows, rows_excess)

rows_text.append(

[

False,

"{} {} not expected ({} {}). "\

24

.format(

rows_excess_text,

("rows are" if pl else \

"row is"),

("rows" if pl else "row"),

rows_excess_numbers_text

)

]

)

rows_set_problem = False

if rows_text:

rows_set_problem = True

Should there be any differences in collections we

know about it already.

We still have no information about ordering.

We do not have to comply to any specific ordering

unless ordering == True

if not rows_set_problem and not ordering:

return False

if not rows_set_problem and ordering:

We need to check ordering

rows_unordered = [j for i, j in zip(sol_rows, \

student_rows) if i != j]

if rows_unordered:

num_row_unordered = len(rows_unordered)

if num_row_unordered > 3:

return [

[False, "%s rows are not ordered \

correctly. " % (str(num_row_unordered))]

]

else:

rows_unordered_text = "\n".join(str(c) \

for c in rows_unordered)

return [

[

25

False,

"These rows are not ordered \

correctly: <pre>%s</pre>"

% (rows_unordered_text),

]

]

else:

return False

The message currently in the rows_text is adjusted

if only one row is to be returned

if rows_set_problem and len(sol_rows) == 1:

if len(student_rows) > 1:

rows_text = [

[

False,

"Only one row is expected. \

The result has %s rows. "

% (str(len(student_rows))),

]

]

elif len(student_rows) == 1 and len(sol_rows) == 1:

Student has only one row, but the result

is different.

student_row = student_rows[0]

sol_row = sol_rows[0]

row_differences = [i != j for i, j in \

zip(sol_row, student_row)]

row_different_vals = [i for i, j in \

zip(student_row, row_differences) if j]

cols_different = [i for i, j in zip(sol_cols, \

row_differences) if j]

pl = len(cols_different) > 1

rows_text = [

[

False,

"%s <code>%s</code> in the column%s \

<code>%s</code> %s incorrect. "

26

% (

("Values" if pl else "The value"),

"(" + ", ".join(str(c) for c in \

row_different_vals) + ")",

("s" if pl else ""),

", ".join(str(c) for c in \

cols_different),

("are" if pl else "is"),

),

]

]

return rows_text

References

[1] D. Katsaros, M. Katsanou, T. P.I., A comparative study on teaching
SQL programming through traditional and gamified approaches, Journal
of Educational Computing Research 57 (8) (2020) 2028––2047.

[2] P. Visual, M. Sibley, H. S.P., Interactive visual learning tools for teaching
SQL and database concepts, Education and Information Technologies 27
(2022) 527–543.

[3] M. Sabin, V. Kafali, Teaching SQL query formulation through seman-
tic mapping and visualization, Journal of Computer Science Education
29 (4) (2019) 155–164.

[4] M. B. Olivier, P. L. Matray, Flipped classrooms in teaching SQL: Stu-
dent perceptions and learning outcomes, Journal of Information Systems
Education 29 (3) (2018) 155–164.

[5] J. Krogstie, E. A. Christensen, An experiment in teaching SQL using
collaborative problem solving in online learning environments, Comput-
ers & Education 112 (2017) 92–105.

[6] P. Solin, Self-paced, instructor-assisted approach to teaching lin-
ear algebra, Mathematics in Computer Science 15 (4) (2021).
doi:DOI:10.1007/s11786-021-00499-z.

27

[7] P. Solin, A. Freyer, Self-paced, instructor-assisted approach to teaching
python programming, Mathematics in Computer Science 17 (2) (2023).
doi:DOI:10.1007/s11786-023-00560-z.

[8] J. Melton, A. R. Simon, Understanding the new SQL: A complete guide,
Morgan Kaufmann (1993).

[9] E. F. Codd, A relational model of data for large shared data banks,
Communications of the ACM 13 (6) (1970) 377–387.

[10] S. Chaudhuri, An overview of query optimization in relational systems,
Proceedings of the ACM SIGMOD International Conference on Man-
agement of Data (1998) 34–43.

[11] W. Archer, J. Davison, Graduate employability: The view of employers,
London: The Council for Industry and Higher Education (CIHE) (2008).

[12] J. Andrews, H. Higson, Graduate employability, ’soft skills’ versus ’hard’
business knowledge: A european study, Higher Education in Europe
33 (4) (2008) 411–422.

[13] M. Mourshed, D. Farrell, D. Barton, Education to employment: Design-
ing a system that works, McKinsey & Company (2012).

[14] D. Bennett, S. Richardson, P. MacKinnon, Enacting strategies for grad-
uate employability: How universities can best support students to de-
velop generic skills, National Centre for Student Equity in Higher Edu-
cation (NCSEHE), Curtin University (2016).

[15] T. W. Burns, W. Yeoh, Bridging the sql skills gap: Curriculum and
pedagogical improvements in an introductory database course, Proceed-
ings of the EDSIG Conference on Information Systems and Computing
Education (2015).

[16] J. F. Pane, B. A. & Myers, Improving the learnability of sql, Proceedings
of the ACM CHI 2000 Conference on Human Factors in Computing
Systems 12 (1) (2000) 53–60.

[17] T. M. Connolly, C. E. Begg, A constructivist-based approach to teaching
database analysis and design, Journal of Information Systems Education
17 (1) (2006) 43–53.

28

[18] R. Radford, C. Lansley, Addressing the SQL skills gap: An experien-
tial learning approach, International Journal of Database Management
Systems (IJDMS) 8 (4) (2016) 1–16.

[19] A. Levine, S. Van Pelt, The great upheaval: Higher education’s past,
present, and uncertain future, Johns Hopkins University Press, Balti-
more (2021).

[20] NCLab, http://nclab.com/ (Accessed December 20, 2024).

[21] MySQL World Sample Database, https://dev.mysql.com/doc/index
-other.html (Accessed December 20, 2024).

[22] SQLParse Library, https://github.com/andialbrecht/sqlparse/

(Accessed December 20, 2024).

29

