

NAME

DATE STARTED DATE COMPLETED

SCHOOL, CLASS, PERIOD

KAREL JR 4

STUDENT JOURNAL
REVISED APRIL 19, 2017

2

Copyright © 2016, 2017 NCLab Inc.

3

TABLE OF CONTENTS:

General Website: https://nclab.com/

Karel Gallery : https://nclab.com/karel-gallery/

Desktop (needs login information) https://desktop.nclab.com/

Keep your name and password in a safe place.

WELCOME TO YOUR JOURNAL 4

SECTION 16: USING GPSX AND GPSY SENSORS, SYMBOLS == != < > 5

SECTION 17: USING BOOLEAN VALUES TRUE AND FALSE 9

SECTION 18: USING THE FUNCTION RANDINT() 13

SECTION 19: EMPTY AND NON-EMPTY LISTS 17

SECTION 20: WORKING WITH LISTS 21

REVIEW YOUR PROGRESS 25

LIST OF BASIC COMMANDS AND KEYWORDS 26

LIST OF KEY VOCABULARY 28

FILE LOG: GAMES I HAVE CREATED 33

DESIGN TEMPLATE 34

NOTES 35

https://nclab.com/
https://nclab.com/karel-gallery/
https://desktop.nclab.com/

4

 WELCOME TO YOUR JOURNAL

Welcome to Karel 4. In Karel 3, you learned how to write more complex programs. If you needed a set of
commands that could be used more than once in a program, you defined it. You learned a few new tricks on
how to improve and evaluate your code. Finally, you became familiar with variables and functions.

In Karel 4, you work with a wide range of specific keywords, variables, and functions. You can test for position
in the maze, whether a situation is true or false, use random values, and …. you are starting to use Python lists!

As a reminder, this journal empowers you to:

1. Remember better.

2. Create your own reference book.

3. Make connections.

4. Keep a record of your work.

5. Use your notes to collaborate with others.

This journal is set up the same way as Karel Jr 1, 2, and 3.

The journal is divided into sections that match those in the on-line course. Each section has:

1. One or two review pages with questions or activities to help you remember what you have learned.
There will always be an open box for your own notes.

2. A bulletin board where you can post real life examples: paste in pictures, sticky notes, and scribbles.
There are ideas and suggestions at the top of each bulletin board.

3. A planning page for your end-of-section project.

The back of the journal contains a glossary with vocabulary from Karel Jr 1 -4, a record page for your files, and a
design template that can be copied to work on games.

As always, remember to slow down, journal, talk with people, and sketch ideas. We hope you will develop a
deeper understanding of what coding is all about, and discover the thrill of having a computer or machine carry
out a program that you have written.

Happy coding!

5

SECTION 16: USING GPSX AND GPSY SENSORS, SYMBOLS == != < >

In this section, you learn how to use the gpsx sensor to determine Karel's horizontal position in the
maze, and use the gpsy sensor to determine Karel's elevation in the maze. You also use the symbols
==, !=, < and >. You know that gpsx is 0 in the left-most column and 14 on the right-most one, gpsy is
0 in the bottom row and 11 in the top one. The keyword and ensures that conditions are satisfied at
the same time, and the keyword or makes sure that at least one condition is satisfied. Parentheses
should be used for expressions such as (gpsx == 7), (gpsy < 3).

Match the symbols to their meanings:

== is greater than
< is not equal to

=! is equal to
> is less than

It is important to understand the difference between the Karel gpsx, gpsy values and an xy coordinate
plane. In Karel, the squares on bottom row are gpsy == 0; the squares in the left column are gpsx
== 0. So the values do not represent a point on the grid lines as in an xy coordinate system.

Remember that gpsx and gpsy can be used to show a range of values, not just one position.

Using different colors or shading, mark and number the location of the following expressions on the
grid.

1. (gpsy > 3)and(gpsx == 4)

2. (gpsy != 6)and(gpsx < 1)

3. (gpsx == 14)and(gpsy == 11)

4. (gpsy == 9)

5. (gpsx == 6)or(gpsx == 8)

6

SECTION 16 NOTES

QUESTIONS

You need to pick up all your clothes and put them in the basket in the southwest corner of your room.
You use the Clean-O-Matic robot to take care of this chore. How will you program the robot?

Karel must retrieve three oxygen bottles left on
the mountain and report their location.

He must deposit them at the “base camp” located
on gpsy == 0, between gpsx == 12 and gpsx == 14.

Write the sections of code that will perform just
these two tasks (don’t worry about how to get
him over the mountain).

Think of the best way to use gpsx, gpsy.

Use this space to write your own notes, questions, and problems.

7

SECTION 16 BULLETIN BOARD

This is a page to post ideas, pictures,
sticky notes, drawings

The comparison to real GPS systems is obvious, although there are
differences. Karel’s coordinates can also be thought of as elevations on
a topographic map, or stairways, or shelves. How could you apply your
understanding of these values when coding real problems?

8

SECTION 16 PROJECT

Use this page to develop ideas for your game for Karel. The person playing your game will need to write code to
solve the game. Use the sensors gpsx and/or gpsy. For your notes, you can draw the solution paths through the
maze, and write the correct code to the left. Just make quick notes here: you can make more detailed notes and
description in Designer Mode using Edit Game.

Game Name: Date:

Program: Maze Sketch (12 rows x 15 columns)

Storyline:

Karel’s goals:

Number of steps:

Keywords:

Required (must use):

Forbidden (can’t use): Number of operations:

Any special challenges:

9

SECTION 17: USING BOOLEAN VALUES TRUE AND FALSE

In this section, you learn how to use Boolean (logical) values True and False, store them in Boolean
or logical variables, return Boolean values from Boolean functions, and use Boolean variables in
conditions and while loops. You know that Karel's sensors such as wall, nugget, mark, empty,
north etc. are Boolean functions. With Boolean variables you can do logical operations such as and or
or. The symbol = is used to assign a value to a variable, and for mathematical equality ("is equal to")
the symbol == is used. The result of a comparison such as a == b is either True or False.

This is a good time to review local and global variables. They are used extensively in this section.

How are Boolean values used in each level? Fill in the blanks in the following table.

Level Variable starts
as

Condition Test Outcome (True) Outcome (False)

17.1 not used on this
level

sensor keyword Karel finds the sensor and
prints “sensor:” True

Karel does not find the
sensor (he either finds an
empty cell or another sensor)
and prints “sensor:” False

17.2 if snake

 sn = true

17.3 nug = false

17.4 Karel finds a bottle in
every square. if
success (is met), prints
“The row was complete!”

17.5 else (success is not met);
prints “One or more bottles
is missing”.

17.6 while not home

 fo=(fo or map)

17.7

10

SECTION 17 NOTES

 QUESTIONS

Use this space to write your own notes, questions, and problems.

And/Or logic gate: electronic circuits are based on electrical signals that are either on or off. We can
think of on as True and off as False. We can use a “truth table” to predict whether or not the output
will be on or off. Complete the tables for the AND gate, and for the OR gate.

Type of Logic Gate Input Output

AND GATE

A = True (On)
B = True (On)

A = True (On)
B = False (Off)

A = False (Off)
B = True (On)

A = False (Off)
B = False (Off)

OR GATE

A = True (On)
B = True (On)

A = True (On)
B = False (Off)

A = False (Off)
B = True (On)

 A = False (Off)
B = False (Off)

There are other types of gates, too: NOT, NAND, NOR, XOR, and XNOR! A typical computer
microprocessor has hundreds of millions of gates in it.

11

SECTION 17 BULLETIN BOARD

This is a page to post ideas,
pictures, sticky notes, drawings

Look up Boolean operations on line.
You will be amazed at how many
combinations can trigger a true or
false result.

You can restrict your search to
Boolean operations in Python if
you want to see what the code
looks like.

12

SECTION 17 PROJECT

Use this page to develop ideas for your game for Karel. The person playing your game will need to write code to
solve the game. Use at least one variable based on a true or false condition. Print the results in the main
program. For your notes, you can draw the solution paths through the maze, and write the correct code to the left.
Just make quick notes here: you can make more detailed notes and description in Designer Mode using Edit
Game.

Game Name: Date:

Program: Maze Sketch (12 rows x 15 columns)

Storyline:

Karel’s goals:

Number of steps:

Keywords:

Required (must use):

Forbidden (can’t use): Number of operations:

Any special challenges:

13

SECTION 18: USING THE FUNCTION RANDINT()

In this section, you learn how to generate random integers using the function randint(), make Karel
repeat something a random number of times, calculate the maximum and the minimum of a given set
of numbers. You know that the function randint(6) can be used to simulate rolling dice.

randint() was used to simulate a game of chance in 18.1 and 18.2, and to build columns of random
height in 18.3 and 18.4. In 18.5 to 18.7, you learned to write a function to determine maximum and
minimum values of those columns.

Chance situations: How would you write a function for the following?

Conditions Code

Rolling “snake eyes”

Rolling a 7 on a dodecahedral die

Explain the procedure for finding the maximum height of the columns in 18.6. What are the limitations?
What minor change is needed to find the minimum?

14

SECTION 18 NOTES

QUESTIONS

It’s your worst nightmare: you start a test, and can’t remember anything! You will have “go random”
and hope for the best. This is a multiple-choice test, with a, b, c, or d as answers. Write those choices
on scraps of paper to be drawn at random for each answer.

Write which answer you drew in the spaces below. The answer key is at the end of this section.
Check your answers. Did guessing (random drawing) pass the test? Compare your results with those
of another student.

Question Random
Answer

Actual
Answer

Correct?
Y/N Question Random

Answer
Actual
Answer

Correct?
Y/N

1. 6.

2. 7.

3. 8.

4. 9.

5. 10.

Score (Correct/Total) Did you pass?

Is this a good application for randomness? Explain.

Use this space to write your own notes, questions, and problems.

15

SECTION 18 BULLETIN BOARD

This is a page to post ideas,
pictures, sticky notes, drawings

Look at images (photographs,
animations, CGI, impressionist
paintings). What random patterns
do you see?

Look up Wolfram Rule 30.

16

SECTION 18 PROJECT

Use this page to develop ideas for your game for Karel. The person playing your game will need to write code to
solve the game. Build a program that uses randint() and tests for either a maximum or a minimum. For your
notes, you can draw the solution paths through the maze, and write the correct code to the left. Just make quick
notes here: you can make more detailed notes and description in Designer Mode using Edit Game.

Game Name: Date:

Program: Maze Sketch (12 rows x 15 columns)

Storyline:

Karel’s goals:

Number of steps:

Keywords:

Required (must use):

Forbidden (can’t use): Number of operations:

Any special challenges:

17

SECTION 19: EMPTY AND NON-EMPTY LISTS

In this section, you learn how to create empty and non-empty lists, append items to a list using
append(), go through list items one at a time, and get the length of a list L using len(L). You know that
lists are like variables, but they can hold multiple values.

In the table below, explain the meaning of each line of code.

Code Meaning

A = [1, 3, 5, 7, 9]

for x in L
 print “Map found at:”, x

Y = []

C.append (x)

len(m)

Build list commands for the following. We will call the list P.

Start with an empty list.

In order, add three erasers, one pencil
sharpener, two pencils, one pen

Parse the list using a For loop to print
out each item.

Find the length of the list.

18

SECTION 19 NOTES

QUESTIONS

You need a bouquet of one of each variety of flowers. Create a list that tells your flower-picking robot
how many steps to take to get to the next type of flower.

 Write a program that will have Karel
record the gpsy location of each key and
print a list.

Use this space to write your own notes, questions, and problems.

19

SECTION 19 BULLETIN BOARD

This is a page to post ideas,
pictures, sticky notes, drawings

Think of lists that we make every
day: not just “to do” lists, or grocery
lists.

Think of situations where you are
counting, mapping, or recording
data.

20

SECTION 19 PROJECT

Use this page to develop ideas for your game for Karel. The person playing your game will need to write code to
solve the game. Create an empty list and append items to it. For your notes, you can draw the solution paths
through the maze, and write the correct code to the left. Just make quick notes here: you can make more detailed
notes and description in Designer Mode using Edit Game.

Game Name: Date:

Program: Maze Sketch (12 rows x 15 columns)

Storyline:

Karel’s goals:

Number of steps:

Keywords:

Required (must use):

Forbidden (can’t use): Number of operations:

Any special challenges:

21

SECTION 20: WORKING WITH LISTS

In this section, you learn how to remove and return the last item of a list using pop(), remove and return
the first item of a list using pop(0), get the length of a list using len(), use the for loop to go through lists
one item at a time, and merge lists. You know that list items can be numbers, Boolean variables, and
even text strings. Lists can contain other lists, such as [gpsx, gpsy] pairs.

In the table below, explain the meaning of each line of code.

Code Meaning

b = A.pop()

if orchid
 o.append([gpsx, gpsy])

repeat 4

 la = X.pop()

n = L.pop(0)

R.append(R2.pop(0))

Build commands for Karel. We are making a map of coin locations, using a list m.

Start with an empty list.

While not home, move forward. If there is a coin, add
True to the list. Otherwise add False.

If there is a wall, turn left.

If there is a wall, turn right twice.

Print the list.

22

SECTION 20 NOTES

QUESTIONS

Here is a list of numbers. L=[2, 9, 6, 1, 0, 5, 5, 8, 10, 4, 3, 6, 8, 7, 20, 1]

Write a for loop that will test the
values in L, and if they are less than 6,
append them to an empty list K. Print
out the results.

You manage a fast food restaurant. You stock your hamburger buns once a week. What would you need to
write into a program that monitored and reported the hamburger bun inventory? (You do not need to write the
code – just make a plan)

Use this space to write your own notes, questions, and problems.

23

SECTION 20 BULLETIN BOARD

This is a page to post ideas,
pictures, sticky notes, drawings

Python lists are powerful. Think of
how these can be applied in real
life.

Think of adding and removing
items, merging information, and
using different types of sensors.

24

SECTION 20 PROJECT

Use this page to develop ideas for your game for Karel. The person playing your game will need to write code to
solve the game. Create two sections to the game. In the first section, you will create a list that will be used in
the second section. For your notes, you can draw the solution paths through the maze, and write the correct code
to the left. Just make quick notes here: you can make more detailed notes and description in Designer Mode
using Edit Game.

Game Name: Date:

Program: Maze Sketch (12 rows x 15 columns)

Storyline:

Karel’s goals:

Number of steps:

Keywords:

Required (must use):

Forbidden (can’t use): Number of operations:

Any special challenges:

25

REVIEW YOUR PROGRESS

This is the final Section of Karel Jr 4. Reflect on what you have learned so far.
Rate yourself C, B, or A:

• C if you could use this skill any time and could coach someone else;
• B if you have a good understanding but need more practice, and
• A if you feel that you are unsure of yourself and need teaching or coaching.

SKILL OR CONCEPT C B A
Use gpsx and gpsy coordinates to locate, get or put items; set conditions with
coordinates (==, !=, <, >)

Use Boolean operators True and False to determine outcomes

Use random integers to play a game or create a pattern.

Find the maximum or minimum value of a set.

Create, append and remove items from a list.

Use for loops based on a list.

Merge lists.

Now, set some learning goals based on your self-evaluation. Don’t worry if you aren’t an expert yet!

RETAKE CERTAIN LEVELS

FIND A COACH

REVIEW AND DISCUSS NOTES

PRACTICE

PRACTICE

REVIEW AND DISCUSS NOTES

CREATE

READY FOR THE NEXT
COURSE

CREATE

COACH

26

LIST OF BASIC COMMANDS AND KEYWORDS FROM KAREL JR 1, 2, 3, AND 4

Command words: go, left, right, get, put

 Directional commands (go, left, right) are always from the robot’s point of view.

 go advances the robot one step.

 left turns the robot to its left.

 right turns the robot to its right.

 Retrieving and placing objects (get, put)

 get picks up an object

 put places an object

 randint(n) randomly selects a number between 1 and n.

Loops

 repeat x, where x = the number of times the command is to be repeated.

 while x, where x = a defined condition

 for x in L, where x is an item in a list L

Conditions

if x, where x = a defined condition (this may be a single sensor word or a more complex set of
conditions using sensor words and operators)

 else may follow an if condition to provide the alternative course of action

Keywords that are Logical Operators

 not the condition is that the sensor is not present

 and the condition needs all of the sensors joined by and to be present

 or the condition needs one of the sensors joined by or to be present

 true, false the condition exists, or doesn’t exist

Important Sensor Words (Karel senses objects and containers when he is in the same square.)

 empty Karel’s pocket is empty

 north Karel is facing north, or the top of the maze grid.

 wall any obstacle is a type of wall. Karel senses it in the square in front of him.

27

 home the home square. Karel sense it when he is in that square.

 gpsx, gpsy sense Karel’s location on the grid in the horizontal and vertical directions.

Defined commands

 def def begins a defined command, which is a set of commands that will be called
 in the main program.

Working with functions and variables

inc(n)tells the program to increase the value of n. The default increment is 1. To increase by
a different amount, write the function as inc(n, x), where x is either a value or a variable
that will increase n.

 Example:
 inc(n,2) increases the variable n by 2 each time
 inc(total,r) increases the variable total by the variable r each time.

dec(n)tells the program to decrease the value of n. The default is -1. To decrease by a
different amount, use the same rules as for increasing.

 print(n)tells the program to print the final value of n after the program has ended. Text
 strings can be printed out on their own or as part of a command. The text is always enclosed in
 quotation marks.

 Example:
 Print “Placed one bottle.” will print “Placed one bottle.”
 Print (n) “bottles remain.” will print “36 bottles remain.” (if n=36)

 return n ends the function, returning a final value for the variable.

Python Lists

 L=[] Empty list L=[1,3,2,8] Non-empty list

 L.append (x) Add an item x to a list L

 L.append ([gpsx, gpsy]) Add a pair of items to a list

 pop: removes an item from a list and assigns it to a variable.

 la = L.pop() removes the last item and assigns it to variable la

 fi = L.pop(0) removes the first item and assigns it to variable fi

28

LIST OF KEY VOCABULARY FROM KAREL JR 1, 2, 3 AND 4 (IN ORDER OF APPEARANCE)

Command words: go, left, right, get, put. These words tell Karel what to do.

Home is the destination square, marked by red diagonal stripes which change to green when
Karel approaches the square. The word home is also used in conjunction with commands.

Max may refer to maximum number of steps, operations, or programming lines.

Steps are the number of squares that Karel moves. The shoe icon counts the number of
steps.

Operations are anything that Karel does: move, turn, pick up or put down objects. The
computer icon counts the number of operations.

Objects are items placed in the maze. (The word “object” can have other connotations in
programming that are not used here).

repeat is written on its own line as repeat x, where x = the number of times the command
is to be repeated.

Body: the body contains the commands to be repeated. The commands are written on the lines
following the repeat command, indented two spaces.

Loop: A set of commands repeated a given number of times.

Nested loop: A loop that is within another loop.

 This is a good time to introduce some of the terms used in programming. Refer to the online
 textbook under Section 5 Programming for details.

Algorithm: a series of logical steps that leads to the solution of a task. Students may be familiar
with algorithms used in operations such as subtraction and long division.

Logical error: a mistake in an algorithm. Planning helps reduce the number of errors.

Computer Program: An algorithm written using a programming language.

Syntax: the way a command line is written.

Syntax error: a mistake in spelling, operators, indentations, spaces

Sensor words: items from the Karel library, which can include collectible items (such as
 orchid), containers (such as basket), and obstacles (such as wall, plant). A word that
 is both in the library and correctly spelled will be blue-colored. Collectible and container items
 are sensed in the square that Karel occupies. Obstacles are sensed in the square in front of
 Karel.

29

 if is written on its own line as if x, where x = a defined condition. In these lessons, predefined
 objects from the library are used as sensor words for the condition.

The body contains the commands to be followed if the if condition is met. The commands
 are written on the lines following the if condition, indented two spaces.

Condition (Section 8 in the textbook): tells the program what to look for and how to act.
 Conditions make decisions while the program is running and handle unexpected situations. The
 program may need to collect all the coins it finds, but may not know where the coins will be
 located. The if condition says: “Is there a coin? If there is a coin, get it.” Conditions work like
 a switch. Note: because if conditions test each instance separately, they are NOT loops, even
 though they are written with a similar format.

 Satisfy: in programming, satisfy means to meet the condition - the condition exists.

 Aisle: a row or column with objects on either side

 Sensor: the presence of something, such as a coin, used to create a condition.

 north: “if not north” can be used to detect if Karel is facing north (the top of the maze),
 and can be used to reorient Karel to any direction, once he is facing north.

Key words or, and, not:

 or, and, not are logical operators for the condition. In order to execute the command,
or means that one (or a set of conditions within parentheses) of two or more

 conditions must be met,
and means both or all of the conditions must be met,
not means that condition must not be met.

empty: tells whether or not the robot has an object in its pocket. This creates a condition,
either if empty, or if not empty

while: A while loop is a repeated set of commands that will continue as long as the
condition being sensed is present. The number of repetitions is not known in advance. The
while loop continues until the condition is no longer sensed. while loops use the same
sensors as if conditions. A while loop is different because it continues until the condition is
no longer sensed, whereas the if condition senses each square as a separate test.

Infinite loop: If a loop never senses when to end (the stopping condition), it can continue
infinitely. Fortunately, most programs will time out if this happens. In Karel, programs can
always be stopped manually if this happens.

 Defined commands: def begins a defined command, which is a set of commands that will
 be called in the main program. Defined commands can be used as many times as needed in the

30

 main program. This can reduce the number of lines needed, and also makes editing easier. If
 there is an error in the defined command, it can be fixed in one place.

Text string: words included in the program that are descriptive and not part of a command.
 Text strings are enclosed in quotation marks and are separated from command words by a
 comma.

Comment lines: lines of text strings, always starting with the # sign that describe what is
 happening in the program. Quotation marks are not needed in this case.

 Variable: in terms of programming, variable is the name and value of something that will be
 recorded in memory. The counting variable is used to increase or decrease a value

 Function: a defined command or set of commands based on a variable that returns a value.
 Functions inc() and dec() are used to increase or decrease a variable by a specified value.

 Local variable: a variable created within a command or function. A local variable cannot be
 used outside of that particular command or function.

 Global variable: a variable created in the main program. A global variable cannot be used inside
 of a command or function.

 Return: the return command ends the function, returning a final value for the variable.

 Sensor: gpsx, gpsy use the grid coordinates to locate Karel (gps is “Global Positioning System”).
 gpsx = 0, gpsy = 0 is the southeast corner square of the maze.

 gpsx indicates the point along the horizontal x axis, measured in grid squares starting on the
 west (left) side.

 gpsy indicates the point along the vertical y axis, measured in grid squares starting on the south
 (bottom) side.

 == means “is equal to”. For example, “gpsx == 8” means “The x coordinate position equals 8.”

 != is a symbol that means "is not equal to". For example, “gpsx != 7” means “The x coordinate
 position is not equal to 7.” This is useful when you want to carry out a task on every square
 except the ones flagged with !=. Make sure the two symbols are together with no spaces in
 between.

 < and > serve the same function as in math. gpsx < 4 would mean “All gpsx locations less than
 4.” gpsy > 6 would mean “All gpsy locations greater than 6.”

 Expressions can be combined with all these symbols. For example: (gpsx > 9) and (gpsy < 5)

31

 Boolean operator: a logical operator, for example: True or False.

 True indicates that a condition is true.

 False indicates that a condition is false (does not exist, for example).

 Random: a random value is selected without regard to pattern, order, or reason. Each value
 within the set has an equal chance of being selected. A coin has an equal chance of landing
 heads or tails. A die has an equal chance of landing with 1, 2, 3, 4, 5 or 6 face up.

 Randint: a command that selects a random integer. The command is written randint(n),
 where n is an integer between 1 and n.

 Maximum: the greatest value out of a set of values. The maximum is determined by a function
 that compares values.

 Minimum: the least value out of a set of results. The minimum is also determined by a
 function.

 List: A list is a set of items, enclosed in square brackets and separated by commas. For example:
 L = [2,2,8,3,4]

 pop: removes an item from a list and assigns it to a variable. Either the last item or the first
 item is removed. For example

 la = L.pop() removes the last item and assigns it to variable la

 fi = L.pop(0) removes the first item and assigns it to variable fi

 Empty List: A list that does not contain any items, shown by empty square brackets. For
 example: L = []

 Non-empty List: A list that contains items. For example: L = [1,6,8,3]

 Append: Add items to a list. For example: L.append (x) , L.append ([gpsx,
 gpsy]). Notice that two or more items must be enclosed in one set of parentheses.

 Parse: Examine the items in a list. The items can be printed out as a line-by-line log of the list,
 using a For loop.

 For loop: A for loop is able to iterate (repeat a function) for items in a list. It is indented the
 same way as other loops. For example, a for loop can print out a log of these items:

 for x in L

 print “current list item:”, x

32

 resulting in

 Length of a list: len

 pop: removes an item from a list and assigns it to a variable. Either the last item or the first
 item is removed. For example

 la = L.pop() removes the last item and assigns it to variable la

 fi = L.pop(0) removes the first item and assigns it to variable fi

33

FILE LOG: GAMES I HAVE CREATED

FILE NAME AND
LOCATION

DATE DESCRIPTION NOTES

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

34

DESIGN TEMPLATE

Game Title: __________________________ Date: ________________ Author: ___________________

Story Ideas:

Maze elements:

Programming ideas:

35

NOTES

	NAME
	DATE COMPLETED
	DATE STARTED
	SCHOOL, CLASS, PERIOD
	WELCOME TO YOUR JOURNAL
	4
	SECTION 16: USING GPSX AND GPSY SENSORS, SYMBOLS == != < >
	5
	SECTION 17: USING BOOLEAN VALUES TRUE AND FALSE
	9
	SECTION 18: USING THE FUNCTION RANDINT()
	13
	SECTION 19: EMPTY AND NON-EMPTY LISTS
	17
	SECTION 20: WORKING WITH LISTS
	21
	REVIEW YOUR PROGRESS
	25
	LIST OF BASIC COMMANDS AND KEYWORDS
	26
	LIST OF KEY VOCABULARY
	28
	FILE LOG: GAMES I HAVE CREATED
	33
	DESIGN TEMPLATE
	34
	NOTES

	TABLE OF CONTENTS:
	WELCOME TO YOUR JOURNAL
	SECTION 16: USING GPSX and GPSY SENSORS, SYMBOLS == != < >
	SECTION 16 NOTES
	QUESTIONS
	SECTION 16 BULLETIN BOARD
	SECTION 16 PROJECT

	SECTION 17: USING BOOLEAN VALUES TRUE AND FALSE
	SECTION 17 NOTES
	QUESTIONS
	SECTION 17 BULLETIN BOARD
	SECTION 17 PROJECT

	SECTION 18: USING THE FUNCTION RANDINT()
	SECTION 18 NOTES
	QUESTIONS
	SECTION 18 BULLETIN BOARD
	SECTION 18 PROJECT

	SECTION 19: EMPTY AND NON-EMPTY LISTS
	SECTION 19 NOTES
	QUESTIONS
	SECTION 19 BULLETIN BOARD
	SECTION 19 PROJECT

	SECTION 20: WORKING WITH LISTS
	SECTION 20 NOTES
	QUESTIONS
	SECTION 20 BULLETIN BOARD
	SECTION 20 PROJECT

	REVIEW YOUR PROGRESS
	LIST OF BASIC COMMANDS AND KEYWORDS FROM KAREL JR 1, 2, 3, AND 4
	LIST OF KEY VOCABULARY FROM KAREL JR 1, 2, 3 AND 4 (IN ORDER OF APPEARANCE)
	FILE LOG: GAMES I HAVE CREATED
	DESIGN TEMPLATE
	NOTES

