

NAME

DATE STARTED DATE COMPLETED

SCHOOL, CLASS, PERIOD

KAREL UNIT 5

STUDENT JOURNAL
REVISED APRIL 19, 2017

2

Copyright © 2016, 2017 NCLab Inc.

3

TABLE OF CONTENTS:

General Website: https://nclab.com/

Karel Gallery: https://nclab.com/karel-gallery/

Desktop (needs login information): https://desktop.nclab.com/

Keep your name and password in a safe place.

WELCOME TO YOUR JOURNAL 4

SECTION 21: PROBABILITY 5

SECTION 22: RECURSION 9

SECTION 23: RECURSION II 13

SECTION 24: ADVANCED SKILLS 17

SECTION 25: CHALLENGES 21

REVIEW YOUR PROGRESS 25

LIST OF BASIC COMMANDS AND KEYWORDS 26

LIST OF KEY VOCABULARY 28

FILE LOG: GAMES I HAVE CREATED 33

DESIGN TEMPLATE 34

NOTES 35

https://nclab.com/
https://nclab.com/karel-gallery/
https://desktop.nclab.com/

4

 WELCOME TO YOUR JOURNAL

Welcome to Karel 5, the last unit in the Karel course. You will be learning and applying advanced logical thinking
and programming skills. You are almost at the finish line – it is worth crossing!

As a reminder, this journal empowers you to:

1. Remember better.

2. Create your own reference book.

3. Make connections.

4. Keep a record of your work.

5. Use your notes to collaborate with others.

This journal is set up the same way as the previous Karel Journals.

The journal is divided into sections that match those in the on-line course. Each section has:

1. One or two review pages with questions or activities to help you remember what you have learned.
There will always be an open box for your own notes.

2. A bulletin board where you can post real life examples: paste in pictures, sticky notes, and scribbles.
There are ideas and suggestions at the top of each bulletin board.

3. A planning page for your end-of-section project.

The back of the journal contains a glossary with all vocabulary from Karel course, a record page for your files, and
a design template that can be copied to work on games.

As always, remember to slow down, journal, talk with people, and sketch ideas. We hope you will develop a
deeper understanding of what coding is all about, and discover the thrill of having a computer or machine carry
out a program that you have written.

Happy coding!

5

SECTION 21: PROBABILITY

In this section, you learn how to use the function rand to create True or False with 50-50 probability.
You use the function rand in conditions and while loops, and in in maze algorithms. You know that 50-
50 probability means that the two events are equally probable, and that rand and rand yields 25-75
probability, which means that the former event is three times less probable than the latter.

Complete the truth tables to show why rand is a 50/50 probability, and rand and rand is 25/75.

Function Possible outcomes Explanation for Probability

rand The probability is 50/50 because

rand and rand The probability is 25/75 because

Think of reasons to use probability in a game by answering these questions.

Karel uses rand to control his movements in Levels 21.5 to 21.7. What types of environment are best
suited to random movement?

When would you use a 50/50 probability, and when would you bias the decision by using 25/75 (Look
back to Levels 21.3, 21.4)?

6

SECTION 21 NOTES

QUESTIONS

Classic probability exercises help to visualize how rand works. Put colored tiles in a bag (2 tiles of
different colors for the 50/50, and 1 tile of one color, 3 tiles of another for the 25/75 draw) and draw
them out. Tally the results for 10 draws, 25 draws and 100 draws and record the total counts in the
chart. How close to 50/50 and 25/75 are you at each point?

Probability 10 trials 25 trials 100 trials Comments

50/50 Color 1

 Color 2

25/75 Color 1

 Color 2

Karel is exploring a dark cave. Write a program
that will have Karel move left or right until he
finds a flashlight. Don’t forget to check for walls.

Use this space to write your own notes, questions, and problems.

7

SECTION 21 BULLETIN BOARD

This is a page to post ideas, pictures,
sticky notes, drawings

The rand command is used differently depending on programming
language and application. In some cases, it generates a random number
(like Karel’s randint()); in others it is used to control probability, as it
does here. Research how rand is used.

8

SECTION 21 PROJECT

Use this page to develop ideas for your game for Karel. The person playing your game will need to write code to
solve the game. Use rand to control some choice that Karel needs to make. For your notes, you can draw the
solution paths through the maze, and write the correct code to the left. Just make quick notes here: you can make
more detailed notes and description in Designer Mode using Edit Game.

Game Name: Date:

Program: Maze Sketch (12 rows x 15 columns)

Storyline:

Karel’s goals:

Number of steps:

Keywords:

Required (must use):

Forbidden (can’t use): Number of operations:

Any special challenges:

9

SECTION 22: RECURSION

In this section, you learn how to use recursion, which is a command or function that calls itself. You
know that recursion is suitable for tasks that can easily be reduced in size, that the recursive call must be
placed in a stopping condition, and that failure to use a stopping condition easily turns recursion into an
infinite loop.

Recursion can be a difficult concept to grasp. Explain the role of each component in the following
program. Here are some vocabulary terms to help you:

custom command stopping condition recursive call main program

Line Purpose (what is happening on this line?)

def walk

 if not home

 if shield

 get

 go

 walk

 return

walk

Why is if not home the stopping condition? How does this differ from a while loop that uses
while not home?

10

SECTION 22 NOTES

QUESTIONS

Write a recursive function for one of the following situations, or make up your own.

• Do pushups until your heartrate reaches 140
beats per minute. Then rest.

• Work in the garden until the temperature is
80 degrees F. Then go inside.

• Practice long division until you can divide a
five digit number by a two digit number
correctly. Then play a video game.

• Eat hot dogs at a contest until you are full.
Then, please stop.

• Your turn:

Use this space to write your own notes, questions, and problems.

11

SECTION 22 BULLETIN BOARD

This is a page to post ideas,
pictures, sticky notes, drawings

There are many examples in mathematics of recursion – a process that
keeps calling itself to infinity – unless we stop it of course. Fibonacci
numbers are a good example. This series was developed in 1202 by an
Italian mathematician of the same name, who observed how rabbits
reproduced. The Fibonacci numbers are defined by:
Fn = Fn-1 + Fn-2 , with F0 = 0 and F1 = 1

They are sometimes represented as a triangle, or geometrically as a spiral
pattern. Research other recursive patterns.

12

SECTION 22 PROJECT

Use this page to develop ideas for your game for Karel. The person playing your game will need to write code to
solve the game. Use at least one defined recursive function. Print the results in the main program. For your
notes, you can draw the solution paths through the maze, and write the correct code to the left. Just make quick
notes here: you can make more detailed notes and description in Designer Mode using Edit Game.

Game Name: Date:

Program: Maze Sketch (12 rows x 15 columns)

Storyline:

Karel’s goals:

Number of steps:

Keywords:

Required (must use):

Forbidden (can’t use): Number of operations:

Any special challenges:

13

SECTION 23: RECURSION II

In this section, you review and practice previous sections: how to use stopping conditions in recursion,
how to make the recursive call from inside a stopping condition, how to split complex tasks into simpler
ones, how to use inequalities, how to get the length of a list, how to increase and decrease values, and
how to pop items from lists.

The key to recursions is finding the stopping condition that ends the pattern being detected by the
recursion.

Describe the recursion in each level. What stopped the recursion?

23.1

23.2

23.3 (bounty)

23.4

23.5

23.6

23.7 (eat)

In the final level (23.7), Karel solves an array by moving in a spiral pattern. Compare this way of solving
arrays to the one in Level 15.7

15.7 23.7

14

SECTION 23 NOTES

QUESTIONS

Write a program to solve the following problem, using recursion.

Oh no! The General has sent Sophia to
the moon. Karel hurries to the launch
pad, climbs into the rocket and gets ready
to blast off. All he needs is the
countdown. Write a recursion that will
count down from 10 to 0 and print “Blast
Off!” at the end.

Use this space to write your own notes, questions, and problems.

15

SECTION 23 BULLETIN BOARD

This is a page to post ideas,
pictures, sticky notes, drawings

Recursion vs. loops: when should
you use recursion?

Research recursion (especially
Python, since you know some of
the code) to find out what people
have to say about its strengths and
limitations.

16

SECTION 23 PROJECT

Use this page to develop ideas for your game for Karel. The person playing your game will need to write code to
solve the game. Build a program that uses one of the specialized recursions learned in Section 23. For your
notes, you can draw the solution paths through the maze, and write the correct code to the left. Just make quick
notes here: you can make more detailed notes and description in Designer Mode using Edit Game.

Game Name: Date:

Program: Maze Sketch (12 rows x 15 columns)

Storyline:

Karel’s goals:

Number of steps:

Keywords:

Required (must use):

Forbidden (can’t use): Number of operations:

Any special challenges:

17

SECTION 24: ADVANCED SKILLS

In this section, you practice all your skills from previous sections in more complex tasks.

What skills did you practice on each level? Use the table to review each level.

Here are some terms that you can use.

gpsx, gpsy coordinates Append and pop lists

while conditional loops if/else conditions

Nested repeat loops Complex tasks or patterns reduced to simpler
ones

Information from one part of a puzzle used to
solve another part.

Defined functions with counting variables

Level Skills

24.1

24.2

24.3

24.4

24.5

24.6

24.7

18

SECTION 24 NOTES

QUESTIONS

Traditional crafts and artwork contain many patterns. Suggest ways to write programs to create these
examples.

Use this space to write your own notes, questions, and problems.

19

SECTION 24 BULLETIN BOARD

This is a page to post ideas,
pictures, sticky notes, drawings

You have learned how to code in a
simplified version of Python.
Python itself is only one of many
programming languages used
today.

One classic way that programmers
use to compare the syntax of
different languages is to write a
program that will print “Hello
World!” Search “Hello World!” on
the Internet to see for yourself.

20

SECTION 24 PROJECT

Use this page to develop ideas for your game for Karel. The person playing your game will need to write code to
solve the game. Use at least two advanced skills that you have learned in Karel 5. For your notes, you can draw
the solution paths through the maze, and write the correct code to the left. Just make quick notes here: you can
make more detailed notes and description in Designer Mode using Edit Game.

Game Name: Date:

Program: Maze Sketch (12 rows x 15 columns)

Storyline:

Karel’s goals:

Number of steps:

Keywords:

Required (must use):

Forbidden (can’t use): Number of operations:

Any special challenges:

21

SECTION 25: CHALLENGES

In this final section, you can practice coding complex tasks, including some classic logic problems.

Some of the solutions are tricky, so here is an extra note-taker page to help you work out your solutions.

Use this space to write your own notes, questions, and problems.

22

SECTION 25 NOTES

QUESTIONS

If you have stuck with Karel all the way to the end of Unit 5 – Congratulations! You now have some
great programming skills.

Pick a level at random from each of the previous 4 units. Erase the code, time yourself, and see how
fast you can complete that level. Did you get it right the first time? Is your code elegant (simple,
effective)? Record your results.

Use this space to write your own notes, questions, and problems.

23

SECTION 25 BULLETIN BOARD

This is a page to post ideas,
pictures, sticky notes, drawings

The Eight Queens is an example of a
classic logic puzzle.

Search the Internet for logic and
math puzzles. Can you find the
code to solve them?

24

SECTION 25 PROJECT

Use this page to develop ideas for your game for Karel. The person playing your game will need to write code to
solve the game. This is your final game for the course. Research some classic logic puzzles or games and see if
you can reproduce them with Karel. For your notes, you can draw the solution paths through the maze, and write
the correct code to the left. Just make quick notes here: you can make more detailed notes and description in
Designer Mode using Edit Game.

Game Name: Date:

Program: Maze Sketch (12 rows x 15 columns)

Storyline:

Karel’s goals:

Number of steps:

Keywords:

Required (must use):

Forbidden (can’t use): Number of operations:

Any special challenges:

25

REVIEW YOUR PROGRESS

This is the final Section of Karel Unit 5. Reflect on what you have learned so far.
Rate yourself C, B, or A:

• C if you could use this skill any time and could coach someone else;
• B if you have a good understanding but need more practice, and
• A if you feel that you are unsure of yourself and need teaching or coaching.

SKILL OR CONCEPT C B A

Use probability (rand, rand and rand) to solve a game

Understand the pros and cons of recursion

Write recursive loops with stopping conditions

Use advanced recursive techniques (nested recursions, etc.)

Use advanced list techniques.

Break large programs into components; test components

Plan and solve classic logic problems

Now, set some learning goals based on your self-evaluation. Don’t worry if you aren’t an expert yet!

RETAKE CERTAIN LEVELS

FIND A COACH

REVIEW AND DISCUSS NOTES

PRACTICE

PRACTICE

REVIEW AND DISCUSS NOTES

CREATE

READY FOR THE NEXT
COURSE

CREATE

COACH

26

LIST OF BASIC COMMANDS AND KEYWORDS FROM KAREL UNITS 1-5

Command words: go, left, right, get, put

 Directional commands (go, left, right) are always from the robot’s point of view.

 go advances the robot one step.

 left turns the robot to its left.

 right turns the robot to its right.

 Retrieving and placing objects (get, put)

 get picks up an object

 put places an object

 randint(n) randomly selects a number between 1 and n.

Loops

 repeat x, where x = the number of times the command is to be repeated.

 while x, where x = a defined condition

 for x in L, where x is an item in a list L

Conditions

if x, where x = a defined condition (this may be a single sensor word or a more complex set of
conditions using sensor words and operators)

 else may follow an if condition to provide the alternative course of action

Keywords that are Logical Operators

 not the condition is that the sensor is not present

 and the condition needs all of the sensors joined by and to be present

 or the condition needs one of the sensors joined by or to be present

 true, false the condition exists, or doesn’t exist

Important Sensor Words (Karel senses objects and containers when he is in the same square.)

 empty Karel’s pocket is empty

 north Karel is facing north, or the top of the maze grid.

 wall any obstacle is a type of wall. Karel senses it in the square in front of him.

27

 home the home square. Karel sense it when he is in that square.

 gpsx, gpsy sense Karel’s location on the grid in the horizontal and vertical directions.

Defined commands

 def def begins a defined command, which is a set of commands that will be called
 in the main program.

Working with functions and variables

inc(n)tells the program to increase the value of n. The default increment is 1. To increase by
a different amount, write the function as inc(n, x), where x is either a value or a variable
that will increase n.

 Example:
 inc(n,2) increases the variable n by 2 each time
 inc(total,r) increases the variable total by the variable r each time.

dec(n)tells the program to decrease the value of n. The default is -1. To decrease by a
different amount, use the same rules as for increasing.

 print(n)tells the program to print the final value of n after the program has ended. Text
 strings can be printed out on their own or as part of a command. The text is always enclosed in
 quotation marks.

 Example:
 Print “Placed one bottle.” will print “Placed one bottle.”
 Print (n) “bottles remain.” will print “36 bottles remain.” (if n=36)

 return n ends the function, returning a final value for the variable.

 rand: a function that creates True or False with 50-50 probability. Calling a rand function is
 like tossing a coin.

 rand and rand: the combined function creates a 25/75 probability

Python Lists

 L=[] Empty list L=[1,3,2,8] Non-empty list

 L.append (x) Add an item x to a list L
 L.append ([gpsx, gpsy]) Add a pair of items to a list

 pop: removes an item from a list and assigns it to a variable.

 la = L.pop() removes the last item and assigns it to variable la
 fi = L.pop(0) removes the first item and assigns it to variable fi

28

LIST OF KEY VOCABULARY WORDS FROM KAREL UNITS 1-5 (IN ORDER OF APPEARANCE)

Command words: go, left, right, get, put. These words tell Karel what to do.

Home is the destination square, marked by red diagonal stripes which change to green when
Karel approaches the square. The word home is also used in conjunction with commands.

Max may refer to maximum number of steps, operations, or programming lines.

Steps are the number of squares that Karel moves. The shoe icon counts the number of
steps.

Operations are anything that Karel does: move, turn, pick up or put down objects. The
computer icon counts the number of operations.

Objects are items placed in the maze. (The word “object” can have other connotations in
programming that are not used here).

repeat is written on its own line as repeat x, where x = the number of times the command
is to be repeated.

Body: the body contains the commands to be repeated. The commands are written on the lines
following the repeat command, indented two spaces.

Loop: A set of commands repeated a given number of times.

Nested loop: A loop that is within another loop.

 This is a good time to introduce some of the terms used in programming. Refer to the online
 textbook under Section 5 Programming for details.

Algorithm: a series of logical steps that leads to the solution of a task. Students may be familiar
with algorithms used in operations such as subtraction and long division.

Logical error: a mistake in an algorithm. Planning helps reduce the number of errors.

Computer Program: An algorithm written using a programming language.

Syntax: the way a command line is written.

Syntax error: a mistake in spelling, operators, indentations, spaces

Sensor words: items from the Karel library, which can include collectible items (such as
 orchid), containers (such as basket), and obstacles (such as wall, plant). A word that
 is both in the library and correctly spelled will be blue-colored. Collectible and container items
 are sensed in the square that Karel occupies. Obstacles are sensed in the square in front of
 Karel.

29

 if is written on its own line as if x, where x = a defined condition. In these lessons, predefined
 objects from the library are used as sensor words for the condition.

The body contains the commands to be followed if the if condition is met. The commands
 are written on the lines following the if condition, indented two spaces.

Condition (Section 8 in the textbook): tells the program what to look for and how to act.
 Conditions make decisions while the program is running and handle unexpected situations. The
 program may need to collect all the coins it finds, but may not know where the coins will be
 located. The if condition says: “Is there a coin? If there is a coin, get it.” Conditions work like
 a switch. Note: because if conditions test each instance separately, they are NOT loops, even
 though they are written with a similar format.

 Satisfy: in programming, satisfy means to meet the condition - the condition exists.

 Aisle: a row or column with objects on either side

 Sensor: the presence of something, such as a coin, used to create a condition.

 north: “if not north” can be used to detect if Karel is facing north (the top of the maze),
 and can be used to reorient Karel to any direction, once he is facing north.

Key words or, and, not:

 or, and, not are logical operators for the condition. In order to execute the command,
or means that one (or a set of conditions within parentheses) of two or more

 conditions must be met,
and means both or all of the conditions must be met,
not means that condition must not be met.

empty: tells whether or not the robot has an object in its pocket. This creates a condition,
either if empty, or if not empty

while: A while loop is a repeated set of commands that will continue as long as the
condition being sensed is present. The number of repetitions is not known in advance. The
while loop continues until the condition is no longer sensed. while loops use the same
sensors as if conditions. A while loop is different because it continues until the condition is
no longer sensed, whereas the if condition senses each square as a separate test.

Infinite loop: If a loop never senses when to end (the stopping condition), it can continue
infinitely. Fortunately, most programs will time out if this happens. In Karel, programs can
always be stopped manually if this happens.

 Defined commands: def begins a defined command, which is a set of commands that will
 be called in the main program. Defined commands can be used as many times as needed in the

30

 main program. This can reduce the number of lines needed, and also makes editing easier. If
 there is an error in the defined command, it can be fixed in one place.

Text string: words included in the program that are descriptive and not part of a command.
 Text strings are enclosed in quotation marks and are separated from command words by a
 comma.

Comment lines: lines of text strings, always starting with the # sign that describe what is
 happening in the program. Quotation marks are not needed in this case.

 Variable: in terms of programming, variable is the name and value of something that will be
 recorded in memory. The counting variable is used to increase or decrease a value

 Function: a defined command or set of commands based on a variable that returns a value.
 Functions inc() and dec() are used to increase or decrease a variable by a specified value.

 Local variable: a variable created within a command or function. A local variable cannot be
 used outside of that particular command or function.

 Global variable: a variable created in the main program. A global variable cannot be used inside
 of a command or function.

 Return: the return command ends the function, returning a final value for the variable.

 Sensor: gpsx, gpsy use the grid coordinates to locate Karel (gps is “Global Positioning System”).
 gpsx = 0, gpsy = 0 is the southeast corner square of the maze.

 gpsx indicates the point along the horizontal x axis, measured in grid squares starting on the
 west (left) side.

 gpsy indicates the point along the vertical y axis, measured in grid squares starting on the south
 (bottom) side.

 == means “is equal to”. For example, “gpsx == 8” means “The x coordinate position equals 8.”

 != is a symbol that means "is not equal to". For example, “gpsx != 7” means “The x coordinate
 position is not equal to 7.” This is useful when you want to carry out a task on every square
 except the ones flagged with !=. Make sure the two symbols are together with no spaces in
 between.

 < and > serve the same function as in math. gpsx < 4 would mean “All gpsx locations less than
 4.” gpsy > 6 would mean “All gpsy locations greater than 6.”

 Expressions can be combined with all these symbols. For example: (gpsx > 9) and (gpsy < 5)

31

 Boolean operator: a logical operator, for example: True or False.

 True indicates that a condition is true.

 False indicates that a condition is false (does not exist, for example).

 Random: a random value is selected without regard to pattern, order, or reason. Each value
 within the set has an equal chance of being selected. A coin has an equal chance of landing
 heads or tails. A die has an equal chance of landing with 1, 2, 3, 4, 5 or 6 face up.

 Randint: a command that selects a random integer. The command is written randint(n),
 where n is an integer between 1 and n.

 Maximum: the greatest value out of a set of values. The maximum is determined by a function
 that compares values.

 Minimum: the least value out of a set of results. The minimum is also determined by a
 function.

 List: A list is a set of items, enclosed in square brackets and separated by commas. For example:
 L = [2,2,8,3,4]

 pop: removes an item from a list and assigns it to a variable. Either the last item or the first
 item is removed. For example

 la = L.pop() removes the last item and assigns it to variable la

 fi = L.pop(0) removes the first item and assigns it to variable fi

 Empty List: A list that does not contain any items, shown by empty square brackets. For
 example: L = []

 Non-empty List: A list that contains items. For example: L = [1,6,8,3]

 Append: Add items to a list. For example: L.append (x) , L.append ([gpsx,
 gpsy]). Notice that two or more items must be enclosed in one set of parentheses.

 Parse: Examine the items in a list. The items can be printed out as a line-by-line log of the list,
 using a For loop.

 For loop: A for loop is able to iterate (repeat a function) for items in a list. It is indented the
 same way as other loops. For example, a for loop can print out a log of these items:

 for x in L

 print “current list item:”, x

32

 resulting in

 Length of a list: len

 pop: removes an item from a list and assigns it to a variable. Either the last item or the first
 item is removed. For example

 la = L.pop() removes the last item and assigns it to variable la

 fi = L.pop(0) removes the first item and assigns it to variable fi

 rand: a function that creates True or False with 50-50 probability. Calling a rand function is
 like tossing a coin.

 rand and rand: the combined function creates a 25/75 probability

 Recursion: a command or function that calls itself.

 The recursion occurs within the body of the loop.

 It must have a stopping condition. If not, it can turn into an infinite loop.

 Stopping condition: a condition that ends a loop.

 Infinite loop: a loop that theoretically could continue operating infinitely. Most programs have
 a timer that would eventually time out the loop.

33

FILE LOG: GAMES I HAVE CREATED

FILE NAME AND
LOCATION

DATE DESCRIPTION NOTES

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

34

DESIGN TEMPLATE

Game Title: __________________________ Date: ________________ Author: ___________________

Story Ideas:

Maze elements:

Programming ideas:

35

NOTES

	NAME
	DATE COMPLETED
	DATE STARTED
	SCHOOL, CLASS, PERIOD
	WELCOME TO YOUR JOURNAL
	4
	SECTION 21: PROBABILITY
	5
	SECTION 22: RECURSION
	9
	SECTION 23: RECURSION II
	13
	SECTION 24: ADVANCED SKILLS
	17
	SECTION 25: CHALLENGES
	21
	REVIEW YOUR PROGRESS
	25
	LIST OF BASIC COMMANDS AND KEYWORDS
	26
	LIST OF KEY VOCABULARY
	28
	FILE LOG: GAMES I HAVE CREATED
	33
	DESIGN TEMPLATE
	34
	NOTES

	TABLE OF CONTENTS:
	WELCOME TO YOUR JOURNAL
	SECTION 21: PROBABILITY
	SECTION 21 NOTES
	QUESTIONS
	SECTION 21 BULLETIN BOARD
	SECTION 21 PROJECT

	SECTION 22: RECURSION
	SECTION 22 NOTES
	QUESTIONS
	SECTION 22 BULLETIN BOARD
	SECTION 22 PROJECT

	SECTION 23: RECURSION II
	SECTION 23 NOTES
	QUESTIONS
	SECTION 23 BULLETIN BOARD
	SECTION 23 PROJECT

	SECTION 24: ADVANCED SKILLS
	SECTION 24 NOTES
	QUESTIONS
	SECTION 24 BULLETIN BOARD
	SECTION 24 PROJECT

	SECTION 25: CHALLENGES
	SECTION 25 NOTES
	QUESTIONS
	SECTION 25 BULLETIN BOARD
	SECTION 25 PROJECT

	REVIEW YOUR PROGRESS
	LIST OF BASIC COMMANDS AND KEYWORDS FROM KAREL UNITS 1-5
	LIST OF KEY VOCABULARY WORDS FROM KAREL UNITS 1-5 (IN ORDER OF APPEARANCE)
	FILE LOG: GAMES I HAVE CREATED
	DESIGN TEMPLATE
	NOTES

